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Abstract— In modern cryptography, the random oracle model is widely used as an imaginary
framework in which the security of a cryptographic scheme is discussed. Since the random oracle is
an imaginary object, even if the security of a cryptographic scheme is proved in the random oracle
model, the random oracle has to be instantiated using a concrete cryptographic hash function such as
the SHA hash functions if we want to use the scheme in the real world. However, it is not clear how
much the instantiation can maintain the security originally proved in the random oracle model, nor is
it clear whether the random oracle can be instantiated somehow while keeping the original security.
In the present paper we investigate this problem, and consider the instantiation of the random oracle
by a random real. Here, a random real is an individual infinite binary string which is classified as
“random”, and not a random variable. It plays a central role in the field of algorithmic randomness.
Algorithmic randomness enables us to classify an individual infinite binary string into random or not.
We show that the security proved in the random oracle model is firmly maintained after instantiating
it by a random real. The results of this paper are based only on the definition of the security of a
cryptographic scheme, and do not depend on specific schemes.
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1 Introduction

In modern cryptography, the random oracle model is
widely used as an imaginary framework in which the
security of a cryptographic scheme is discussed. In the
random oracle model, the cryptographic hash function
used in a cryptographic scheme is formulated as a ran-
dom variable uniformly distributed over all possibility
of the function, called the random oracle, and the legit-
imate users and the adversary against the scheme are
modeled so as to get the values of the hash function not
by evaluating it in their own but by querying the ran-
dom oracle [1]. Since the random oracle is an imaginary
object, even if the security of a cryptographic scheme is
proved in the random oracle model, the random oracle
has to be instantiated using a concrete cryptographic
hash function such as the SHA hash functions if we
want to use the scheme in the real world. Once it is
instantiated, however, the security proof is spoiled and
goes back to square one. Actually, it is not clear how
much the instantiation can maintain the security origi-
nally proved in the random oracle model, nor is it clear
whether the random oracle can be instantiated some-
how while keeping the original security.

In the present paper we investigate this problem, and
consider the instantiation of the random oracle by a
random real. Here, a random real is an individual infi-
nite binary string which is classified as “random”, and
plays a central role in the field of algorithmic random-
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ness. Algorithmic randomness, also known as algorth-
mic information theory, originated in the groundbreak-
ing works of Solomonoff, Kolmogorov, and Chaitin in
the mid-1960s. They independently introduced the no-
tion of program-size complexity, also known as Kol-
mogorov complexity, in order to quantify the random-
ness of an individual object. Around the same time,
Martin-Löf [8] introduced a measure theoretic approach
to characterize the randomness of an individual infinite
binary string. This approach, called Martin-Löf ran-
domness nowadays, is one of the major notions in al-
gorithmic randomness as well as program-size complex-
ity. Later on, in the 1970s Schnorr [10] and Chaitin [2]
showed that Martin-Löf randomness is equivalent to
the randomness defined by program-size complexity in
characterizing random infinite binary strings. In the
21st century, algorithmic randomness makes remark-
able progress through close interaction with recursion
theory [9, 4].

In cryptography, the randomness is just a probability
distribution or its family. Namely, the true randomness
in cryptography is a uniform probability distribution
such as the random oracle, while the pseudorandom-
ness is a family of probability distributions which has
a certain computational complexity-theoretic property.
Thus, cryptology has had no concern with the random-
ness of an individual object so far. In algorithmic ran-
domness, on the other hand, a random real, i.e., a ran-
dom infinite binary string, is not a random variable,
unlike in cryptography. Algorithmic randomness en-
ables us to classify an individual infinite binary string
into random or not.
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In this paper we show that the security proved in
the random oracle model is firmly maintained after in-
stantiating it by a random real. Actually, we give an
equivalent condition for an individual oracle instanti-
ating the random oracle to maintain the security in
the random oracle model, in terms of certain variants
of Martin-Löf randomness. The results of this paper
are based only on the definition of the security of a
cryptographic scheme, and do not depend on specific
schemes.

The paper is organized as follows. We begin in Sec-
tion 2 with some preliminaries to algorithmic random-
ness. In Section 3 we investigate the instantiation of
the random oracle by a random real in public-key en-
cryption schemes, and present an equivalent condition
for an individual oracle instantiating the random oracle
to maintain the security in the random oracle model.
We then show in Section 4 that the same holds for the
full-domain hash signature schemes in a general form.
In Section 5 we present the instantiation by concrete
random reals. We conclude this paper with a mention
of the future direction of this work in Section 6.

2 Preliminaries

We start with some notation about numbers and
strings which will be used in this paper. #S is the
cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is
the set of natural numbers, and N+ is the set of positive
integers. Q is the set of rational numbers.
{0, 1}∗ = {λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . } is

the set of finite binary strings where λ denotes the
empty string, and {0, 1}∗ is ordered as indicated. We
identify any string in {0, 1}∗ with a natural number in
this order. For any x ∈ {0, 1}∗, |x| is the length of
x. For any n ∈ N, we denote by {0, 1}n and {0, 1}≤n

the sets {x | x ∈ {0, 1}∗ & |x| = n} and {x | x ∈
{0, 1}∗ & |x| ≤ n}, respectively. For any n, m ∈ N, we
denote by Funcm

n and Funcm
≤n the set of all functions

mapping {0, 1}n to {0, 1}m and the set of all functions
mapping {0, 1}≤n to {0, 1}m, respectively. A subset S
of {0, 1}∗ is called prefix-free if no string in S is a prefix
of another string in S.
{0, 1}∞ is the set of infinite binary strings, where an

infinite binary string is infinite to the right but finite to
the left. For any α ∈ {0, 1}∞ and any n ∈ N, we denote
by α�n∈ {0, 1}∗ the first n bits of α. For any function
f , the domain of definition of f is denoted by dom f .
We write “r.e.” instead of “recursively enumerable.”

2.1 Algorithmic Randomness

In the following we concisely review some definitions
and results of algorithmic randomness [2, 3, 9, 4].

The idea in algorithmic randomness is to think of a
real, i.e., an infinite binary string, as random if it is
in no effective null set. To specify an algorithmic ran-
domness notion, one has to specify a type of effective
null set, which is usually done by introducing a test
concept. Failing the test is the same as being in the
null set. In this manner, various randomness notions,

such as 2-randomness, weak 2-randomness, Demuth
randomness, Martin-Löf randomness, Schnorr random-
ness, Kurtz randomness, have been introduced so far,
and a hierarchy of algorithmic randomness notions has
been developed (see [9, 4] for the detail).

Among other randomness notions, Martin-Löf ran-
domness is a central one. This is because in many
respects, Martin-Löf randomness is well-behaved, in
that the main properties of Martin-Löf random infi-
nite strings do match our intuition of what random
infinite string should look like. Moreover, the concept
of Martin-Lof randomness is robust in the sense that it
admits various equivalent definitions that are all natu-
ral and intuitively meaningful, as we will see in what
follows. Martin-Löf randomness is defined as follows
based on the notion of Martin-Löf test.

Definition 2.1 (Martin-Löf [8]). A subset C of N+ ×
{0, 1}∗ is called a Martin-Löf test if C is an r.e. set
and there exists a total recursive function f : N+ →
Q ∩ (0,∞) such that limn→∞ f(n) = 0 and for every
n ∈ N+, ∑

x∈Cn

2−|x| ≤ f(n),

where Cn =
{

x
∣∣ (n, x) ∈ C

}
. For any α ∈ {0, 1}∞, we

say that α is Martin-Löf random if for every Martin-
Löf test C, there exists n ∈ N+ such that, for every
k ∈ N+, α�k /∈ Cn.1

One of the equivalent variants of Martin-Löf random-
ness is Solovay randomness, which plays a major role
in this paper, as well as Martin-Löf randomness (see
Chaitin [3] for the historical detail of Solovay random-
ness).

Definition 2.2. A subset C of N+×{0, 1}∗ is called a
Solovay test if C is an r.e. set and∑

(n,x)∈C

2−|x| <∞,

where the sum is over all pairs (n, x) ∈ C. For any
α ∈ {0, 1}∞, we say that α is Solovay random if for
every Solovay test C, there exists N ∈ N+ such that,
for every n > N and every k ∈ N+, α�k /∈ Cn.

The robustness of Martin-Löf randomness is mainly
due to the fact that it admits characterizations based
on the notion of program-size complexity, as shown in
Theorem 2.3. A prefix-free machine is a partial recur-
sive function M : {0, 1}∗ → {0, 1}∗ such that dom M
is a prefix-free set. For each prefix-free machine M
and each x ∈ {0, 1}∗, KM (x) is defined by KM (x) =
min

{
|p|

∣∣ p ∈ {0, 1}∗ & M(p) = x
}

(may be ∞). A
prefix-free machine U is said to be optimal if for each
prefix-free machine M there exists d ∈ N with the fol-
lowing property; if p ∈ dom M , then there is q ∈ dom U

1 Normally, Martin-Löf random is defined with fixing the total

recursive function f : N+ → Q∩(0,∞) to the form f(n) = 2−n.
However, the relaxation of the function f as in Definition 2.1
does not alter the class of Martin-Löf random infinite binary
strings.
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for which U(q) = M(p) and |q| ≤ |p|+d. It is then easy
to see that there exists an optimal prefix-free machine.
We choose a particular optimal prefix-free machine U
as the standard one for use, and define K(x) as KU (x),
which is referred to as the program-size complexity of
x or the Kolmogorov complexity of x.

Theorem 2.3 (Schnorr [10] and Chaitin [3]). For ev-
ery α ∈ {0, 1}∞, the following conditions are equiva-
lent:

(i) α is Martin-Löf random.

(ii) α is Solovay random.

(iii) There exists c ∈ N such that, for all n ∈ N+,
n− c ≤ K(α�n).

(iv) limn→∞K(α�n)− n =∞.

The condition (iii) means that the infinite binary
string α is incompressible.

We denote by MLR the set of all infinite binary strings
which are Martin-Löf random. Since there are only
countably infinitely many algorithms and every Martin-
Löf test induces an effective null set, it is easy to show
the following.

Theorem 2.4 (Martin-Löf [8]). L(MLR) = 1 where L
is Lebesgue measure on {0, 1}∞.

3 Public-Key Encryption

Let `(n) be a polynomial. An `-function is a function
H : {0, 1}∗ → {0, 1}∗ such that |H(x)| = `(|x|) for ev-
ery x ∈ {0, 1}∗. For each `-function H and each n ∈ N,
we define a function H|n : {0, 1}n → {0, 1}`(n) by the
condition that H|n(x) = H(x) for every x ∈ {0, 1}n.

Definition 3.1. Let `(n) be a polynomial. A public-
key encryption scheme relative to `-functions is a tu-
ple (Gen,Enc,Dec) of probabilistic polynomial-time al-
gorithms such that, for every `-function H,

1. The key generation algorithm Gen takes as input
the security parameter 1n and outputs a pair of
keys (pk, sk). We refer to the first of these as the
public key and the second as the private key. We
assume that n can be determined from each of pk
and sk.

2. The encryption algorithm Enc takes as input a
public key pk and a message m from some under-
ling plaintext space (that may depend on pk). It is
given oracle access to H|n(·), and then outputs a
ciphertext c. We write this as c← Enc

H|n(·)
pk (m).

3. The decryption algorithm Dec takes as input a
private key sk and a ciphertext c. It is given ora-
cle access to H|n(·), and then outputs a message
m. We write this as m := Dec

H|n(·)
sk (c).

It is required that, for all d ∈ N+, for all but finitely
many n, for all `-function H, for all (pk, sk) output by
Gen(1n), and for all messages m,

Pr[Dec
H|n(·)
sk (Enc

H|n(·)
pk (m)) 6= m] ≤ 1

nd

where the probability is taken over the internal coin
tosses of the algorithms Enc and Dec.

In this paper we consider the security of public-key
encryption schemes against chosen-plaintext attacks as
an example. We can show the same results for other
security notions, such as the security against chosen-
ciphertext attacks.

Consider the following experiment defined for a public-
key encryption scheme Π = (Gen,Enc,Dec) relative
to `-functions, a probabilistic polynomial-time adver-
sary A, a parameter n, and a function G : {0, 1}n →
{0, 1}`(n):

The CPA indistinguishability experi-
ment PubKcpa

A,Π(n, G):

1. Gen(1n) is run to obtain keys (pk, sk).
2. Adversary A is given pk as well as ora-

cle access to G(·). The adversary out-
puts a pair of messages m0,m1 of the
same length. (These messages must be
in the plaintext space associated with
pk.)

3. A random bit b ← {0, 1} is chosen,
and then a ciphertext c← Enc

G(·)
pk (mb)

is computed and given to A.
4. A continues to have access to G(·),

and outputs a bit b′.
5. The output of the experiment is de-

fined to be 1 if b′ = b, and 0 otherwise.

The CPA-security relative to a specific `-function is
defined as follows.

Definition 3.2. Let H be an `-function. A public-
key encryption scheme Π = (Gen,Enc,Dec) relative to
`-functions has indistinguishable encryptions under a
chosen-plaintext attack (or is CPA-secure) relative to
H if for all probabilistic polynomial-time adversaries A
and all d ∈ N+ there exists N ∈ N+ such that, for all
n > N ,

Pr[PubKcpa
A,Π(n, H|n) = 1] ≤ 1

2
+

1
nd

.

On the other hand, the CPA-security in the random
oracle model is formulated as follows.

Definition 3.3. A public-key encryption scheme Π =
(Gen,Enc,Dec) relative to `-functions has indistinguish-
able encryptions under a chosen-plaintext attack (or is
CPA-secure) in the random oracle model if for all prob-
abilistic polynomial-time adversaries A and all d ∈ N+

there exists N ∈ N+ such that, for all n > N ,

1

#Func`(n)
n

∑
G∈Func

`(n)
n

Pr[PubKcpa
A,Π(n, G) = 1] ≤ 1

2
+

1
nd

.
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We identify the set of all `-functions with {0, 1}∞ in
the following manner. Each `-function H : {0, 1}∗ →
{0, 1}∗ is identified with the infinite binary string

H(0)H(1)H(00)H(01)H(10)H(11)H(000) · · · · · · .

Definition 3.4 (Solovay randomness with respect to
an arbitrary set of Solovay tests). Let S be a set of
Solovay tests. For any α ∈ {0, 1}∞, we say that α is
Solovay random with respect to S if for every Solovay
test C ∈ S, there exists N ∈ N+ such that, for every
n > N and every k ∈ N+, α�k /∈ Cn.

Definition 3.5. Let `(n) be a polynomial, and let Π =
(Gen,Enc,Dec) be a public-key encryption scheme rel-
ative to `-functions. We define S-TESTcpa

Π as the class
of all subsets C of N+ × {0, 1}∗ for which there exist
a probabilistic polynomial-time adversary A and d ≥ 2
such that C is the set of all

(n, xG(0n)G(0n−11)G(0n−210) · · ·G(1n−10)G(1n))

which have the following properties (i) and (ii):

(i) x ∈ {0, 1}∗ and |x| =
n−1∑
k=1

`(k)2k.

(ii) G : {0, 1}n → {0, 1}`(n) and

Pr[PubKcpa
A,Π(n, G) = 1]− 1

2
>

1
nd

.

Theorem 3.6. Let `(n) be a polynomial. Suppose that
a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random
oracle model. Then S-TESTcpa

Π contains only Solovay
tests.

In order to prove Theorem 3.6, we need the following
two lemmas.

Lemma 3.7. Let f1, . . . , fN be reals. Suppose that
1
N

∑N
i=1 fi ≤ ε. Then, for every α > 0, the number

of i for which αε < fi is less than N/α.

Proof. We prove the contraposition of Lemma 3.7. As-
sume that the number of i for which αε < fi is at least
N/α. Then

∑N
i=1 fi > αεN/α = εN and therefore

1
N

∑N
i=1 fi > ε.

Lemma 3.8. Let d ∈ N with d ≥ 2.

∞∑
k=n

1
kd
≤ 1

(d− 1)(n− 1)d−1
.

Proof. The result follows from the inequality:

∞∑
k=n

1
kd
≤

∞∑
k=n

∫ k

k−1

1
kd

=
∫ ∞

n−1

1
xd

dx

=
1

(d− 1)(n− 1)d−1
.

Proof of Theorem 3.6. Let C ∈ S-TESTcpa
Π . Then there

exist a probabilistic polynomial-time adversary A and
d ≥ 2 such that C is the set of all

(n, xG(0n)G(0n−11)G(0n−210) · · ·G(1n−10)G(1n))

which have the properties (i) and (ii) in Definition 3.5.
Suppose that Π is CPA-secure in the random oracle
model. Then it follows from Definition 3.3 that there
exists N ∈ N+ such that, for all n > N ,

1

#Func`(n)
n

∑
G∈Func

`(n)
n

(
Pr[PubKcpa

A,Π(n, G) = 1]− 1
2

)
≤ 1

n2d
.

Using Lemma 3.7 with ε = 1/n2d and α = nd, we see
that, for every n > N ,

#
{

G

∣∣∣∣ Pr[PubKcpa
A,Π(n, G) = 1]− 1

2
>

1
nd

}
<

#Func`(n)
n

nd
.

It is then easy to see that C is an r.e. set, since the
dyadic rational Pr[PubKcpa

A,Π(n, G) = 1] is computable,
given n and G : {0, 1}n → {0, 1}`(n). On the other
hand, since #Func`(n)

n = 2`(n)2n

, it is also easy to see
that ∑

(n,y)∈C & n>N

2−|y| <
∑
n>N

#Func`(n)
n

nd
2−`(n)2n

=
∑
n>N

1
nd

<∞,

where the first sum is over all pairs (n, y) ∈ C with
n > N , and the last inequality follows from Lemma 3.8.
Thus C is a Solovay test.

Definition 3.9 (Martin-Löf randomness with respect
to an arbitrary set of Martin-Löf tests). Let S be a set
of Martin-Löf tests. For any α ∈ {0, 1}∞, we say that
α is Martin-Löf random with respect to S if for every
Martin-Löf test C ∈ S, there exists n ∈ N+ such that,
for every k ∈ N+, α�k /∈ Cn.

Definition 3.10. Let `(n) be a polynomial, and let
Π = (Gen,Enc,Dec) be a public-key encryption scheme
relative to `-functions. We define ML-TESTcpa

Π as the
class of all subsets C of N+ × {0, 1}∗ for which there
exists D ∈ S-TESTcpa

Π such that, for every n ∈ N+,
Cn =

⋃∞
k=nDk.

Theorem 3.11. Let `(n) be a polynomial. Suppose
that a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random or-
acle model. Then ML-TESTcpa

Π contains only Martin-
Löf tests.

Proof. Let C ∈ ML-TESTcpa
Π . Then there exists D ∈

S-TESTcpa
Π such that, for every n ∈ N+, Cn =

⋃∞
k=nDk.

Suppose that Π is CPA-secure in the random oracle
model. It follows from Theorem 3.6 that D is a Solovay
test. It is then easy to see that C is an r.e. set, since D
is an r.e. set. On the other hand, since D ∈ S-TESTcpa

Π ,
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there exist a probabilistic polynomial-time adversary
A and d ≥ 2 such that D is the set of all

(n, xG(0n)G(0n−11)G(0n−210) · · ·G(1n−10)G(1n))

which have the properties (i) and (ii) in Definition 3.5.
Then, in the same manner as the proof of Theorem 3.6
we can show that there exists N ∈ N+ such that, for
every n > N ,

#
{

G

∣∣∣∣ Pr[PubKcpa
A,Π(n, G) = 1]− 1

2
>

1
nd

}
<

#Func`(n)
n

nd
.

It follows that, for each n > N ,

∑
y∈Cn

2−|y| ≤
∞∑

k=n

∑
s∈Dk

2−|s| <

∞∑
k=n

#Func
`(k)
k

kd
2−`(k)2k

=
∞∑

k=n

1
kd
≤ 1

(d− 1)(n− 1)d−1
.

Thus C is a Martin-Löf test.

Definition 3.12. Let `(n) be a polynomial, and let
Π = (Gen,Enc,Dec) be a public-key encryption scheme
relative to `-functions. We denote by SecrHcpa

Π the set
of all `-functions H : {0, 1}∗ → {0, 1}∗ such that Π is
CPA-secure relative to H.

Theorem 3.13. Let `(n) be a polynomial. Suppose
that a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random or-
acle model. Let H : {0, 1}∗ → {0, 1}∗ be an `-function.
Then the following conditions are equivalent:

(i) H ∈ SecrHcpa
Π .

(ii) H is Solovay random with respect to S-TESTcpa
Π .

(iii) H is Martin-Löf random with respect to ML-TESTcpa
Π .

Proof. First we show the equivalence between the con-
ditions (i) and (ii). The negation of the condition (i)
is that there exist a probabilistic polynomial-time ad-
versary A and d ≥ 2 such that, for infinitely many
n ∈ N+,

Pr[PubKcpa
A,Π(n, H|n) = 1]− 1

2
>

1
nd

.

However, it is easy to see that this is equivalent to the
condition that there exists C ∈ S-TESTcpa

Π such that,
for infinitely many n ∈ N+, there exists k ∈ N+ such
that H �k∈ Cn. This is further equivalent to the con-
dition that H is not Solovay random with respect to
S-TESTcpa

Π , since S-TESTcpa
Π contains only Solovay tests

by Theorem 3.6. Thus the conditions (i) and (ii) are
equivalent to each other.

Next we show the equivalence between the condi-
tions (ii) and (iii). Suppose that C ∈ ML-TESTcpa

Π

and D ∈ S-TESTcpa
Π satisfy that Cn =

⋃∞
k=nDk for

all n ∈ N+. Then the condition that for all n ∈ N+

there exists k ∈ N+ such that H �k∈ Cn is equivalent
to the condition that for infinitely many n ∈ N+ there

exists k ∈ N+ such that H �k∈ Dn. Note here that
ML-TESTcpa

Π contains only Martin-Löf tests by Theo-
rem 3.11, and S-TESTcpa

Π contains only Solovay tests
by Theorem 3.6. Thus, H is not Martin-Löf random
with respect to ML-TESTcpa

Π if and only if H is not Solo-
vay random with respect to S-TESTcpa

Π . This completes
the proof.

Obviously, the following proposition holds.

Proposition 3.14. Let α ∈ {0, 1}∞.

(i) For every set S of Martin-Löf tests, if α is Martin-
Löf random then α is Martin-Löf random with
respect to S.

(ii) For every set S of Solovay tests, if α is Solovay
random then α is Solovay random with respect to
S.

Theorem 3.15. Let `(n) be a polynomial. Suppose
that a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random or-
acle model. For every `-function H, if H is Martin-Löf
random then H ∈ SecrHcpa

Π .

Proof. The result follows immediately from Theorem 3.13
and Proposition 3.14.

Theorem 3.16. Let `(n) be a polynomial. Suppose
that a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random or-
acle model. Then L(SecrHcpa

Π ) = 1, where L is Lebesgue
measure on {0, 1}∞.

Proof. The result follows immediately from Theorem 2.4
and Theorem 3.15.

4 Signature Schemes

Let `(n) be a polynomial. An `-family is a family
{Hn}n∈N+ such that Hn : {0, 1}∗ → {0, 1}`(n) for all
n ∈ N+.

Definition 4.1. Let `(n) be a polynomial. A signature
scheme relative to `-families is a tuple (Gen,Sign,Vrfy)
of three probabilistic polynomial-time algorithms such
that, for every `-family {Hn}n∈N+ ,

1. The key generation algorithm Gen takes as input
a security parameter 1n and outputs a pair of keys
(pk, sk). These are called the public key and the
private key, respectively. We assume that n can
be determined from each of pk and sk.

2. The signing algorithm Sign takes as input a pri-
vate key sk and a message m ∈ {0, 1}∗. It is
given oracle access to Hn(·), and then outputs a
signature σ, denoted as σ ← Sign

Hn(·)
sk (m).

3. The deterministic verification algorithm Vrfy takes
as input a public key pk, a massage m, and a sig-
nature σ. It is given oracle access to Hn(·), and
then outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write this as
b := Vrfy

Hn(·)
pk (m,σ).
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It is required that, for every n ∈ N+, for every `-family
{Hn}n∈N+ , for every (pk, sk) output by Gen(1n), and
for every m ∈ {0, 1}∗,

Vrfy
Hn(·)
pk (m,Sign

Hn(·)
sk (m)) = 1.

Let Π = (Gen,Sign,Vrfy) be a signature scheme rel-
ative to `-families, and consider the following experi-
ment for a probabilistic polynomial-time adversary A,
a parameter n, and a function G mapping a superset
of {0, 1}≤q(n) to {0, 1}`(n) where q(n) is the maximum
value between the running time of A and the running
time of Sign on the parameter n:

The signature experiment Sig-forgeA,Π(n, G):

1. Gen(1n) is run to obtain keys (pk, sk).
2. Adversary A is given pk and oracle ac-

cess to Sign
G(·)
sk (·) and G(·). (The first

oracle returns a signature Sign
G(·)
sk (m)

for any message m of the adversary’s
choice.) The adversary then outputs
(m,σ). Let Q denotes the set of mes-
sages whose signatures were requested
by A during its execution.

3. The output of the experiment is de-
fined to be 1 if and only if (1) m /∈ Q,
and (2) Vrfy

G(·)
pk (m,σ) = 1.

The existential unforgeability of signature schemes
under adaptive chosen-message attacks relative to a
specific `-family is defined as follows.

Definition 4.2. Let {Hn}n∈N+ be an `-family. A sig-
nature scheme Π = (Gen,Sign,Vrfy) relative to `-families
is existentially unforgeable under an adaptive chosen-
message attack relative to {Hn}n∈N+ if for all proba-
bilistic polynomial-time adversaries A and all d ∈ N+

there exists N ∈ N+ such that, for all n > N ,

Pr[Sig-forgeA,Π(n, Hn) = 1] ≤ 1
nd

.

On the other hand, the existential unforgeability of
signature schemes under adaptive chosen-message at-
tacks in the random oracle model is formulated as fol-
lows.

Definition 4.3. A signature scheme Π = (Gen,Sign,Vrfy)
relative to `-families is existentially unforgeable under
an adaptive chosen-message attack in the random or-
acle model if for all probabilistic polynomial-time ad-
versaries A and all d ∈ N+ there exists N ∈ N+ such
that, for all n > N ,

1

#Func
`(n)
≤q(n)

∑
G∈Func

`(n)
≤q(n)

Pr[Sig-forgeA,Π(n, G) = 1] ≤ 1
nd

,

where q(n) is the maximum value between the running
time of A and the running time of Sign on the param-
eter n.

We identify the set of all `-families with {0, 1}∞ in
the following manner: We choose a particular bijective
total recursive function b : N → N × N with b(k) =
(b1(k), b2(k)) as the standard one for use throughout
the rest of this paper. We assume for convenience that,
for every k, l ∈ N, if b1(k) = b1(l) and k < l then
b2(k) < b2(l). For example, the inverse function of a
function c : N × N → N with c(m,n) = (m + n)(m +
n + 1)/2 + n can serve as such a function b. Then each
`-family {Hn}n∈N+ is identified with the infinite binary
string

Hb1(0)(b2(0))Hb1(1)(b2(1))Hb1(2)(b2(2)) · · · · · · . (1)

Recall here that we identify {0, 1}∗ with N, and there-
fore each b2(k) is regarded as a finite binary string in
(1).

Definition 4.4. Let `(n) be a polynomial, and let Π =
(Gen,Sign,Vrfy) be a signature scheme relative to `-
families. We define S-TESTacma

Π as the class of all sub-
sets C of N+×{0, 1}∗ for which there exist a probabilis-
tic polynomial-time adversary A and d ≥ 2 such that C
is the set of all

(n, x0G(λ)x1G(0)x2G(1)x3 · · ·xf(n)G(1q(n)))

which have the following properties (i), (ii), and (iii):

(i) q(n) is the maximum value between the running
time of A and the running time of Sign on the
parameter n, and f(n) = 2q(n)+1 − 1.

(ii) For each i = 0, . . . , f(n), xi ∈ {0, 1}∗ and

|x0G(λ)x1G(0)x2G(1)x3 · · ·xi| =
∑
k<ki

`(b1(k)),

where ki is a natural number such that b(ki) =
(n, i).

(iii) G : {0, 1}≤q(n) → {0, 1}`(n) and

Pr[Sig-forgeA,Π(n, G) = 1] >
1
nd

.

Theorem 4.5. Let `(n) be a polynomial. Suppose that
a signature scheme Π = (Gen,Sign,Vrfy) relative to
`-families is existentially unforgeable under an adap-
tive chosen-message attack in the random oracle model.
Then S-TESTacma

Π contains only Solovay tests.

Proof. Let C ∈ S-TESTacma
Π . Then there exist a prob-

abilistic polynomial-time adversary A and d ≥ 2 such
that C is the set of all

(n, x0G(λ)x1G(0)x2G(1)x3 · · ·xf(n)G(1q(n)))

which have the properties (i), (ii), and (iii) in Def-
inition 4.4. Suppose that a signature scheme Π =
(Gen,Sign,Vrfy) relative to `-families is existentially un-
forgeable under an adaptive chosen-message attack in

6



the random oracle model. Then it follows from Defi-
nition 4.3 that there exists N ∈ N+ such that, for all
n > N ,

1

#Func
`(n)
≤q(n)

∑
G∈Func

`(n)
≤q(n)

Pr[Sig-forgeA,Π(n, G) = 1] ≤ 1
n2d

.

Using Lemma 3.7 with ε = 1/n2d and α = nd, we see
that, for every n > N ,

#
{

G

∣∣∣∣ Pr[Sig-forgeA,Π(n, G) = 1] >
1
nd

}
<

#Func
`(n)
≤q(n)

nd
.

It is then easy to see that C is an r.e. set, since the
dyadic rational Pr[Sig-forgeA,Π(n, G) = 1] is computable,
given n and G : {0, 1}≤q(n) → {0, 1}`(n). On the other
hand, since #Func

`(n)
≤q(n) = 2`(n)(2q(n)+1−1), it is also easy

to see that, for each n > N ,

∑
(n,y)∈C & n>N

2−|y| <
∑
n>N

#Func
`(n)
≤q(n)

nd
2−`(n)(2q(n)+1−1)

=
∑
n>N

1
nd

<∞,

where the first sum is over all pairs (n, y) ∈ C with
n > N , and the last inequality follows from Lemma 3.8.
Thus C is a Solovay test.

Definition 4.6. Let `(n) be a polynomial, and let Π =
(Gen,Sign,Vrfy) be a signature scheme relative to `-
families. We define ML-TESTacma

Π as the class of all
subsets C of N+ × {0, 1}∗ for which there exists D ∈
S-TESTacma

Π such that, for every n ∈ N+, Cn =
⋃∞

k=nDk.

Theorem 4.7. Let `(n) be a polynomial. Suppose that
a signature scheme Π = (Gen,Sign,Vrfy) relative to
`-families is existentially unforgeable under an adap-
tive chosen-message attack in the random oracle model.
Then ML-TESTacma

Π contains only Martin-Löf tests.

Proof. Let C ∈ ML-TESTacma
Π . Then there exists D ∈

S-TESTacma
Π such that, for every n ∈ N+, Cn =

⋃∞
k=nDk.

Suppose that Π is existentially unforgeable under an
adaptive chosen-message attack in the random oracle
model. It follows from Theorem 4.5 that D is a Solovay
test. It is then easy to see that C is an r.e. set, since D is
an r.e. set. On the other hand, since D ∈ S-TESTacma

Π ,
there exist a probabilistic polynomial-time adversary
A and d ≥ 2 such that D is the set of all

(n, x0G(λ)x1G(0)x2G(1)x3 · · ·xf(n)G(1q(n)))

which have the properties (i), (ii), and (iii) in Defini-
tion 4.4. Then, in the same manner as the proof of
Theorem 4.5 we can show that there exists N ∈ N+

such that, for every n > N ,

#
{

G

∣∣∣∣ Pr[Sig-forgeA,Π(n, G) = 1] >
1
nd

}
<

#Func
`(n)
≤q(n)

nd
.

It follows that, for each n > N ,∑
y∈Cn

2−|y| ≤
∞∑

k=n

∑
s∈Dk

2−|s|

<

∞∑
k=n

#Func
`(k)
≤q(k)

kd
2−`(k)(2q(k)+1−1)

=
∞∑

k=n

1
kd
≤ 1

(d− 1)(n− 1)d−1
.

Thus C is a Martin-Löf test.

Definition 4.8. Let `(n) be a polynomial, and let Π =
(Gen,Sign,Vrfy) be a signature scheme relative to `-
families. We denote by ExstUnfrgacma

Π the set of all `-
families {Hn}n∈N+ such that Π is existentially unforge-
able under an adaptive chosen-message attack relative
to {Hn}n∈N+ .

In a similar manner to the proof of Theorem 3.13, we
can show the following theorem based on Theorems 4.5
and 4.7.

Theorem 4.9. Let `(n) be a polynomial. Suppose that
a signature scheme Π = (Gen,Sign,Vrfy) relative to `-
families is existentially unforgeable under an adaptive
chosen-message attack in the random oracle model. Let
{Hn}n∈N+ be an `-family. Then the following condi-
tions are equivalent:

(i) {Hn}n∈N+ ∈ ExstUnfrgacma
Π .

(ii) {Hn}n∈N+ is Solovay random with respect to S-TESTacma
Π .

(iii) {Hn}n∈N+ is Martin-Löf random with respect to
ML-TESTacma

Π .

Theorem 4.10. Let `(n) be a polynomial. Suppose
that a signature scheme Π = (Gen,Sign,Vrfy) relative to
`-families is existentially unforgeable under an adaptive
chosen-message attack in the random oracle model. For
every `-family {Hn}n∈N+ , if {Hn}n∈N+ is Martin-Löf
random then {Hn}n∈N+ ∈ ExstUnfrgacma

Π .

Proof. The result follows immediately from Theorem 4.9
and Proposition 3.14.

Theorem 4.11. Let `(n) be a polynomial. Suppose
that a signature scheme Π = (Gen,Sign,Vrfy) relative
to `-families is existentially unforgeable under an adap-
tive chosen-message attack in the random oracle model.
Then L(ExstUnfrgacma

Π ) = 1.

Proof. The result follows immediately from Theorem 2.4
and Theorem 4.10.

5 Security by Concrete Random Reals

While a real is almost surely Martin-Löf random by
Theorem 2.4, only a few concrete examples of random
reals are known. Chaitin [2] introduced the halting
probability Ω defined by

Ω =
∑

p∈dom U

2−|p|.
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Recall here that U is an optimal prefix-free machine
used to define the notion of program-size complexity
K(x). He then showed that the base-two expansion of
Ω is Martin-Löf random. On the other hand, Tadaki [11]
introduced another type of Martin-Löf random real,
called Θ, based on all compressible finite binary strings.
It is defined by

Θ =
∑

K(x)≤|x|

2−|x|.

The reals Ω and Θ are not a computable real but a left-
computable real, i.e., a real which can be approximated
from below by a computable increasing sequence of ra-
tionals converging to it. By Theorems 3.15 and 4.10
we have Theorems 5.1 and 5.2 below, respectively.

Theorem 5.1. Let `(n) be a polynomial. Suppose that
a public-key encryption scheme Π = (Gen,Enc,Dec)
relative to `-functions is CPA-secure in the random or-
acle model. Then Π is CPA-secure relative to each of
Ω and Θ, where Ω and Θ are regarded as an `-function
via their base-two expansions.

Theorem 5.2. Let `(n) be a polynomial. Suppose that
a signature scheme Π = (Gen,Sign,Vrfy) relative to
`-families is existentially unforgeable under an adap-
tive chosen-message attack in the random oracle model.
Then Π is existentially unforgeable under an adaptive
chosen-message attack relative to each of Ω and Θ,
where Ω and Θ are regarded as an `-family via their
base-two expansions.

6 Concluding Remarks

In this paper we have considered the instantiation of
the random oracle. We have derived equivalent con-
ditions for an individual oracle instantiating the ran-
dom oracle to maintain the security originally proved
in the random oracle model, in terms of a variant of
Martin-Löf randomness or Solovay randomness. These
equivalent conditions depend on the combination of a
cryptographic scheme and its security notion being con-
sidered.

For example, if a public-key encryption scheme Π
is CPA-secure in the random oracle model, the set
SecrHcpa

Π of all oracles instantiating the random ora-
cle which maintain CPA-security is characterized in
terms of a set ML-TESTcpa

Π of Martin-Löf tests. In the
same manner, if another public-key encryption scheme
Π′ is CCA-secure in the random oracle model, we can
characterize the set SecrHcca

Π′ of all oracles which main-
tain CCA-security, in terms of a set ML-TESTcca

Π′ of
Martin-Löf tests. The comparison between the two
sets SecrHcpa

Π and SecrHcca
Π′ may lead to revealing which

is easier to instantiate between the CPA-security of Π
and the CCA-security of Π′. Thus, future work may
aim at comparing various sets of oracles instantiating
the random oracle which maintain the security origi-
nally proved in the random oracle model for each com-
bination of cryptographic scheme and security notion,

in terms of Martin-Löf tests or Solovay tests. To do
so, we may use the techniques developed in algorithmic
randomness so far. This effort may develop a hierarchy
of sets of oracles in which each set is ordered according
to the degree of reality of instantiation.

Note also that our results are valid only if the secu-
rity in the random oracle model is confirmed already.
This may imply that the random oracle model is not
necessarily an imaginary framework to discuss the secu-
rity of a cryptographic scheme, but may have substan-
tial implications for the security of it in the standard
model.
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