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Abstract: The notion of probability plays an important role in almost all areas of science, including
cryptography. In modern mathematics, however, probability theory means nothing other than measure
theory, and the operational characterization of the notion of probability is not established yet. In this
paper, based on the toolkit of algorithmic randomness we present an operational characterization of the
notion of probability. Algorithmic randomness, also known as algorithmic information theory, is a field
of mathematics which enables us to consider the randomness of an individual infinite sequence. We
use the notion of Martin-Löf randomness with respect to Bernoulli measure to present the operational
characterization. As the first step of the research of this line, in this paper we only consider the case
of finite probability space, i.e., the case where the sample space of the underlying probability space is
finite, for simplicity. This case is enough to study modern cryptography since all probability spaces
which modern cryptography considers are finite. In the paper we make an application of our formalism
to cryptography by presenting new equivalent characterizations of the notion of perfect secrecy in terms
of our formalism.
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1 Introduction

The notion of probability plays an important role
in almost all areas of science, including cryptography.
In modern mathematics, however, probability theory
means nothing other than measure theory, and an op-
erational characterization of the notion of probability
is not established yet.

In the past century, however, there was a comprehen-
sive attempt to provide such a characterization. Namely,
von Mises developed a mathematical theory of repeti-
tive events which is aimed at reformulating the theory
of probability and statistics based on an operational
characterization of the notion of probability [17, 18]. In
a series of comprehensive works which began in 1919,
von Mises developed this theory and, in particular, in-
troduced the notion of collective as a mathematical ide-
alization of a long sequence of outcomes of experiments
or observations repeated under a set of invariable con-
ditions, such as the repeated tossing of a coin or of a
pair of dice.

The collective plays a role as an operational charac-
terization of the notion of probability, and is an infi-
nite sequence of sample points in the sample space of
a probability space. As the randomness property of
the collective, von Mises assumes that all “reasonable”
infinite subsequences of a collective satisfy the law of
large numbers with the identical limit value, where the
subsequences are selected using “acceptable selection
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rules.” Wald [19, 20] later showed that for any count-
able collection of selection rules, there are sequences
that are collectives in the sense of von Mises, but at
the time it was unclear exactly what types of selection
rules should be acceptable. There seemed to von Mises
to be no canonical choice.

Later, with the development of computability the-
ory and the introduction of generally accepted pre-
cise mathematical definitions of the notions of algo-
rithm and computable function, Church [5] made the
first explicit connection between computability theory
and randomness by suggesting that a selection rule be
considered acceptable if and only if it is computable.
In 1939, however, Ville [16] revealed the defect of the
notion of collective. Namely, he showed that for any
countable collection of selection rules, there is a se-
quence that is random in the sense of von Mises but has
properties that make it clearly nonrandom. (For the
development of the theory of collectives from the point
of view of the definition of randomness, see Downey
and Hirschfeldt [6].)

In 1966, Martin-Löf [10] introduced the definition of
random sequences, which is called Martin-Löf random-
ness nowadays, and plays a central role in the recent
development of algorithmic randomness. At the same
time, he introduced the notion of Martin-Löf random-
ness with respect to Bernoulli measure [10]. He then
pointed out that this notion overcomes the defect of
the collective in the sense of von Mises, and this can
be regarded precisely as the collective which von Mises
wanted to define. However, he did not develop prob-
ability theory based on Martin-Löf random sequence
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with respect to Bernoulli measure.
Algorithmic randomness is a field of mathematics

which studies the definitions of random sequences and
their property [11, 6]. However, the research on al-
gorithmic randomness would seem only interested in
the notions of randomness and their property, and not
seem to have tried to develop probability theory based
Martin-Löf randomness with respect to Bernoulli mea-
sure in an operational manner so far.

In our former work [14] we started such an attempt.
Namely, in the work [14] we presented an operational
characterization of the notion of probability based on
Martin-Löf randomness with respect to Bernoulli mea-
sure. As the first step of the research of this line, in the
work [14] we only considered the case of finite probabil-
ity space, i.e., the case where the sample space of the
underlying probability space is finite, for simplicity.

In this paper we further develop and refine our theory
of operational characterization of the notion of proba-
bility started by the work [14] while reviewing the re-
sults of the work. In this paper we consider the case
of finite probability space, as with the work [14]. This
case is enough to study modern cryptography since all
probability spaces which modern cryptography consid-
ers are finite. In particular, we make an application of
our theory to cryptography by presenting new equiva-
lent characterizations of the notion of perfect secrecy
in terms of our formalism.

Due to the 8-page limit, we omit all proofs of the
new results. A full paper which describes all the proofs
and other related results is in preparation.

2 Preliminaries

2.1 Basic Notation and Definitions

We start with some notation about numbers and
strings which will be used in this paper. #S is the
cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is
the set of natural numbers, and N+ is the set of posi-
tive integers. Q is the set of rationals, and R is the set
of reals.

An alphabet is a nonempty finite set. We suppose
that any alphabet which we consider in this paper has
at least two elements. Let Ω be an alphabet. A finite
string over Ω is a finite sequence of elements from the
alphabet Ω. We denote by Ω∗ the set of all finite strings
over Ω, which contains the empty string denoted by λ.
We denote by Ω+ the set Ω−{λ}. For any σ ∈ Ω∗, |σ| is
the length of σ. Therefore |λ| = 0. A subset S of Ω∗ is
called prefix-free if no string in S is a prefix of another
string in S. We write “r.e.” instead of “recursively
enumerable.”

An infinite sequence over Ω is an infinite sequence of
elements from the alphabet Ω, where the sequence is
infinite to the right but finite to the left. We denote by
Ω∞ is the set of all infinite sequences over Ω.

Let α ∈ Ω∞. For any n ∈ N, we denote by α�n∈ Ω∗

the first n elements in the infinite sequence α and by
α(n) the nth element in α. Thus, for example, α�4=
α(1)α(2)α(3)α(4), and α�0= λ. For any S ⊂ Ω∗, the

set {α ∈ Ω∞ | ∃n ∈ N α�n∈ S} is denoted by [S]
≺

.
Note that (i) [S]

≺ ⊂ [T ]
≺

for every S ⊂ T ⊂ Ω∗, and
(ii) for every set S ⊂ Ω∗ there exists a prefix-free set
P ⊂ Ω∗ such that [S]

≺
= [P ]

≺
. For any σ ∈ Ω∗, we

denote by [σ]
≺

the set [{σ}]≺, i.e., the set of all infinite
sequences over Ω extending σ. Therefore [λ]

≺
= Ω∞.

We briefly review measure theory. For the detail, see
Billingsley [3]. A subset R of Ω∞ is open if R = [S]

≺

for some S ⊂ Ω∗. In this paper we consider the σ-field
F generated by all open sets on Ω∞, which is defined
as the intersection of all the σ-fields containing all open
sets on Ω∞. A probability measure representation over
Ω is a function r : Ω∗ → [0, 1] such that (i) r(λ) = 1 and
(ii) r(σ) =

∑
a∈Ω r(σa) for every σ ∈ Ω∗. A probability

measure representation r induces the measure µr on the
σ-field F . In this paper, we use the following properties
of the measure µr.

Proposition 1 (Properties of measure on Ω∞).

(i) µr
(
[P ]
≺)

=
∑
σ∈P r(σ) for every prefix-free set

P ⊂ Ω∗. Therefore µr (∅) = µr
(
[∅]≺

)
= 0 and

µr (Ω∞) = µr
(
[{λ}]≺

)
= 1.

(ii) µr (C) ≤ µr (D) for every C,D in the σ-field F
with C ⊂ D.

(iii) µr (
⋃
i Ci) =

∑
i µr (Ci) for every sequence {Ci}i∈N

in the σ-field F .

A function f : N → Ω∗ or f : N → Q is called com-
putable if there exists a deterministic Turing machine
which on every input n ∈ N halts and outputs f(n).
A computable function is also called a total recursive
function. A real a is called computable if there exists a
computable function g : N → Q such that |a− g(k)| <
2−k for all k ∈ N. We say that α ∈ Ω∞ is computable
if the mapping N 3 n 7→ α�n is a computable function,
which is equivalent to that the real 0.α in base-#Ω
notation is computable.

2.2 Algorithmic Randomness

In the following we concisely review some definitions
and results of algorithmic randomness [4, 11, 6].

We use L to denote Lebesgue measure on {0, 1}∞.
Namely, L = µr where the probability measure repre-
sentation r is defined by the condition that r(σ) = 2−|σ|

for every σ ∈ {0, 1}∗. The idea in algorithmic random-
ness is to think of an infinite binary sequence as ran-
dom if it is in no effective null set. An effective null
set is a subset S of {0, 1}∞ such that L (S) = 0 and S
has some type of effective property. To specify an algo-
rithmic randomness notion, one has to specify a type of
effective null set, which is usually done by introducing a
test concept. Failing the test is the same as being in the
null set. In this manner, various randomness notions,
such as 2-randomness, weak 2-randomness, Demuth
randomness, Martin-Löf randomness, Schnorr random-
ness, Kurtz randomness, have been introduced so far,
and a hierarchy of algorithmic randomness notions has
been developed (see [11, 6] for the detail).
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Among all randomness notions, Martin-Löf random-
ness is a central one. This is because in many re-
spects, Martin-Löf randomness is well-behaved, in that
the many properties of Martin-Löf random infinite se-
quences do match our intuition of what random infi-
nite sequence should look like. Moreover, the concept
of Martin-Löf randomness is robust in the sense that it
admits various equivalent definitions that are all natu-
ral and intuitively meaningful (see e.g., [11, 6] for the
detail). Martin-Löf randomness is defined as follows
based on the notion of Martin-Löf test.

Definition 2 (Martin-Löf randomness, Martin-Löf [10]).
A subset C of N+×{0, 1}∗ is called a Martin-Löf test if
C is an r.e. set and for every n ∈ N+, L

(
[Cn]

≺) ≤ 2−n,

where Cn =
{
σ
∣∣ (n, σ) ∈ C

}
.

For any α ∈ {0, 1}∞, we say that α is Martin-Löf
random if for every Martin-Löf test C there exists n ∈
N+ such that α /∈ [Cn]

≺
.

Let C be a Martin-Löf test. Then, for each k ∈ N+,
using (ii) of Proposition 1 we see that L

(⋂∞
n=1 [Cn]

≺) ≤
L
(
[Ck]
≺) ≤ 2−k. On letting k →∞, we have

L

( ∞⋂
n=1

[Cn]
≺

)
= 0.

Thus, the set
⋂∞
n=1 [Cn]

≺
forms an effective null set

in the notion of Martin-Löf randomness. Definition 2
says that an infinite binary sequence α is Martin-Löf
random if α is not in the effective null set

⋂∞
n=1 [Cn]

≺

for any Martin-Löf test C.

3 Martin-Löf Randomness with respect
to Bernoulli Measure

In order to provide an operational characterization
of the notion of probability we use a generalization of
Martin-Löf randomness over Bernoulli measure.

Let Ω be an alphabet through out the rest of this pa-
per. It plays a role of the set of all possible outcomes
of experiments or observations. The probability sim-
plex on Ω, denoted by P(Ω), is the set of all functions
P : Ω → R such that P (a) ≥ 0 for every a ∈ Ω and∑
a∈Ω P (a) = 1. Bernoulli measure is given as follows.
Let P ∈ P(Ω). Consider a function r : Ω∗ → [0, 1]

such that r(a1 . . . an) =
∏n
i=1 P (ai) for every n ∈ N

and a1, . . . , an ∈ Ω. The function r is a probabil-
ity measure representation. The measure µr induced
by r is Bernoulli measure on Ω∞, denoted λP . Then
Bernoulli measure λP on Ω∞ has the following prop-
erty: For every σ ∈ Ω∗,

λP
(
[σ]
≺)

=
∏
a∈Ω

P (a)Na(σ), (1)

where Na(σ) is the number of the occurrences of the
element a in the finite string σ.1

Martin-Löf randomness with respect to Bernoulli mea-
sure is defined as follows. This notion was, in essence,

1 00 is defined as 1 in the equation (1).

introduced by Martin-Löf [10], as well as the notion of
Martin-Löf randomness, which we describe in Defini-
tion 2.

Definition 3 (Martin-Löf randomness with respect to
Bernoulli measure, Martin-Löf [10]). Let P ∈ P(Ω). A
subset C of N+ × Ω∗ is called a Martin-Löf P -test if C
is an r.e. set such that, for every n ∈ N+, λP

(
[Cn]

≺) ≤
2−n, where Cn =

{
σ
∣∣ (n, σ) ∈ C

}
.

For any α ∈ Ω∞, we say that α is Martin-Löf P -
random if for every Martin-Löf P -test C there exists
n ∈ N+ such that α /∈ [Cn]

≺
.

Note that in Definition 3 we do not require that
P (a) > 0 for all a ∈ Ω. Therefore, P (a0) may be
0 for some a0 ∈ Ω. In the case where Ω = {0, 1} and
P ∈ P(Ω) satisfies that P (0) = P (1) = 1/2, the Martin-
Löf P -randomness results in the Martin-Löf random-
ness.

4 Ensemble

In this section, according to our former work [14]
we give an operational characterization of the notion
of probability for a finite probability space. We will
identify the substance of the notion of probability for
a finite probability space. For that purpose, we first
review the notion of finite probability space, based on
the notion of probability simplex. Let P ∈ P(Ω). For
each A ⊂ Ω, we define P (A) by P (A) :=

∑
a∈A P (a).

Then, P can be regarded as a finite probability space
(Ω,F , P ), where F is the set of all subset of Ω. The
set Ω is the sample space, and elements in Ω are called
sample points or elementary events. A subset of Ω is
called an event, and P (A) is called the probability of
A for every event A. In what follows, we regard each
element in P(Ω) as a finite probability space in this
manner.

We propose to regard a Martin-Löf P -random se-
quence of sample points as an operational characteriza-
tion of the notion of probability for a finite probability
space. Thus, since the Martin-Löf P -randomness plays
a central role in our formalism, in particular we call
it ensemble for a finite probability space, as in Defini-
tion 4. The name “ensemble” comes from physics.

Definition 4 (Ensemble, Tadaki [14]). Let P ∈ P(Ω).
A Martin-Löf P -random sequence in Ω∞ is called an
ensemble for the finite probability space P .

Let P ∈ P(Ω). Consider an infinite sequence α ∈ Ω∞

of outcomes which is obtained by an infinite reputation
of trials described by the finite probability space P .
The operational characterization of the notion of prob-
ability for the finite probability space P is thought to be
completed if the property which the infinite sequence
α has to satisfy is determined. We thus propose the
following thesis.

Thesis 1. Let P ∈ P(Ω). An ensemble for P is an op-
erational characterization of the finite probability space
P .
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Let us consider the validity of Thesis 1. In what fol-
lows we check that the notion of ensemble satisfies the
necessary conditions which the notion of probability is
considered to have to satisfy from our intuitive under-
standing of the notion of probability. Let P0 ∈ P(Ω),
and consider an infinite sequence α0 ∈ Ω∞ of outcomes
which is obtained by an infinite reputation of trials de-
scribed by the finite probability space P0.

The first necessary condition which the notion of
probability is considered to have to satisfy is that the
law of large numbers holds for α0. Theorem 5 below
confirms that this certainly holds. Note that we have
to check whether the law of large numbers holds for
any Martin-Löf P -random sequence since P is not com-
putable reals, in general. However, we can certainly
prove it using the Chernoff bound as follows.

Theorem 5 (The law of large numbers). Let P ∈
P(Ω). For every α ∈ Ω∞, if α is an ensemble for P
then, for every a ∈ Ω, limn→∞Na(α�n)/n = P (a).

In order to prove Theorem 5, we need the following
theorem, Chernoff bound, which is a modification of
the form given in Section 1.2.2 of Goldreich [8].

Theorem 6 (Chernoff bound). Let P in P({0, 1}).
Then for each ε with 0 < ε ≤ P (0)P (1) and each n ∈
N+, we have λP

(
[Sn]

≺)
< 2e−

ε2

2P (0)P (1)
n, where Sn is

the set of all σ ∈ {0, 1}n such that |N1(σ)/n− P (1)| >
ε.

Proof of Theorem 5. Let a ∈ Ω. We defineQ ∈ P({0, 1})
such that Q(1) = P (a) and Q(0) = 1− P (a). Let β be
the infinite binary sequence obtained from α by replac-
ing all a by 1 and all symbols other than a by 0 in α.
It follows from Theorem 13 below that β is Martin-Löf
Q-random and N1(β�n) = Na(α�n) for every n.

Assume contrarily that limn→∞Na(α�n)/n 6= P (a).
Then limn→∞N1(β�n)/n 6= P (a) and therefore there
exists ε > 0 such that |N1(β�n)/n− P (a)| > 2ε for
infinitely many n. It follows from Theorem 6 that

Pr

[∣∣∣∣N1(β�n)

n
− P (a)

∣∣∣∣ > ε

]
< 2e−

ε2

2P (a)(1−P (a))
n.

Since pi is not necessarily computable, we choose rL, rR ∈
Q with pi−2ε < rL < pi− ε and pi+ ε < rR < pi+ 2ε.
For each n ∈ N+, let Sn be the set {x ∈ {0, 1}n |
rL < N1(x)/n < rR} and let Tn =

⋃∞
m=n Sm. Then

β ∈ [Tn]
≺

and

λQ
(
[Tn]

≺) ≤ ∞∑
m=n

2e−cm = 2e−cn/(1− e−c),

where c ∈ Q with 0 < c < ε2/2P (a)(1 − P (a)). Then
it is easy to show that there exists a total recursive
function f : N+ → N+ such that 2e−cf(n)/(1 − e−c) ≤
2−n. Thus, β is Martin-Löf Q-random since the set
{(n, σ) | n ∈ N+ & σ ∈ Tf(n)} is Martin-Löf Q-test and

β ∈ [Tn]
≺

for every n. Hence we have a contradiction,
and the result follows.

The following is immediate from Theorem 5.

Corollary 7. Let P,Q ∈ P(Ω). If there exists α ∈ Ω∞

which is both an ensemble for P and an ensemble for
Q, then P = Q.

The second necessary condition which the notion of
probability is considered to have to satisfy is that an
elementary event with probability zero never occurs in
the infinite sequence α0. Note that the notion of prob-
ability is more than the law of large numbers. To see
this, consider the finite probability space P ∈ P({a, b})
such that P (a) = 0 and P (b) = 1, and consider the
infinite sequence α = b, a, b, b, b, b, b, b, b, b, b, b, . . . . . . .
Since limn→∞Na(α�n)/n = 0 = P (a), the law of large
numbers certainly holds for α. However, the elemen-
tary event a with probability zero has occurred in α
once. This contradicts our intuition that an elemen-
tary event with probability zero never occurs. The ex-
ample shows that the law of large numbers is insuffi-
cient to characterizes the notion of probability. Thus,
the notion of probability is more than the law of large
numbers.

Theorem 8 below states that an elementary event
with probability zero never occurs in an ensemble, and
thus shows that the notion of ensemble coincides with
our intuition about the notion of probability in this
respect. The result was, in essence, pointed out by
Martin-Löf [10].

Theorem 8. Let P ∈ P(Ω), and let a ∈ Ω. Suppose
that α is an ensemble for the finite probability space P
and P (a) = 0. Then α does not contain a.

Proof. Assume contrarily that α contains a. Then there
exists a prefix σ ∈ Ω+ of α which contains a. For each
n, we define Tn as {σ}. Then, since P (a) = 0, we have
λP
(
[Tn]

≺)
= 0 for all n ∈ N+, and T is r.e., obviously.

Thus, {Tn} is Martin-Löf P -test. On the other hand,
α ∈ [Tn]

≺
for all n, and therefore α is not Martin-Löf

P -random. Hence, we have a contradiction, and the
proof is completed.

The following corollary is immediate from Theorem 8.
It states that an elementary event with probability one
always happens in an ensemble, and thus the notion of
ensemble coincides with our intuition about the notion
of probability in this respect.

Corollary 9. Let P ∈ P(Ω), and let a ∈ Ω. Suppose
that α is an ensemble for the finite probability space P
and P (a) = 1. Then α consists only of a.

In what follows we consider the third necessary con-
dition which the notion of probability is considered to
have to satisfy. Assume that an observer A performs an
infinite reputation of trials described by a finite prob-
ability space P ∈ P(Ω), and thus is generating an in-
finite sequence α ∈ Ω∞ of outcomes of observations:
α = a1, a2, a3, a4, a5, a6, a7, a8, . . . . . . . According to
our thesis, Thesis 1, α is an ensemble for P . Consider
another observer B who wants to adopt the following
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subsequence β of α as the outcomes of the observa-
tions: β = a2, a3, a5, a7, a11, a13, a17, . . . . . . , where the
observer B only takes into account the nth elements in
the original sequence α such that n is a prime number.
According to Thesis 1, β has to be an ensemble for P ,
as well. However, is this true?

Consider this problem in a general setting. Assume
as before that an observer A performs an infinite rep-
utation of trials described by a finite probability space
P ∈ P(Ω), and thus is generating an infinite sequence
α ∈ Ω∞ of outcomes of observations: α = a1, a2, a3, a4,
a5, a6, a7, . . . . . . . According to Thesis 1, α is an en-
semble for P . Now, let f : N+ → N+ be an injection.
Consider another observer B who wants to adopt the
following sequence β of α as the outcomes of the obser-
vations: β = af(1), af(2), af(3), af(4), af(5), . . . . . . . Ac-
cording to our thesis, β has to be an ensemble for P ,
as well. However, is this true?

We can confirm this by restricting the ability of B,
that is, by assuming that every observer can select ele-
ments from the original sequence α only in an effective
manner. This means that the function f : N+ → N+

has to be a computable function. Theorem 10 below
shows this result.

Theorem 10 (Closure property under a computable
shuffling, Tadaki [14]). Let P ∈ P(Ω), and let α be
an ensemble for P . Then, for every injective function
f : N+ → N+, if f is computable, then the infinite se-
quence αf := α(f(1))α(f(2))α(f(3))α(f(4)) . . . . . . is
an ensemble for P .

Proof. We show the contraposition. Suppose that αf is
not Martin-Löf P -random. Then there exists a Martin-
Löf P -test S ⊂ N+ × Ω∗ such that αf ∈ [Sn]

≺
for

every n. For each σ ∈ Ω+, let F (σ) be the set of
all τ ∈ Ω+ such that |τ | = max f({1, 2, . . . , |σ|}) and
σ = τ(f(1))τ(f(2)) . . . τ(f(|σ|)). We then define T to
be {(n, F (σ)) | n ∈ N+ & σ ∈ Sn}. Since f is an
injection and

∑
a∈Ω P (a) = 1, it is easy to see that

λP
(
[F (σ)]

≺)
= λP

(
[σ]
≺)

. Therefore λP
(
[Tn]

≺)
=

λP
(
[Sn]

≺) ≤ 2−n. Thus, since T is r.e., we see that T

is Martin-Löf P -test. On the other hand, α ∈ [Tn]
≺

for
every n, and therefore α is not Martin-Löf P -random.
This completes the proof.

In other words, Theorem 10 states that ensembles
for P are closed under a computable shuffling.

As the forth necessary condition which the notion of
probability is considered to have to satisfy, we can con-
sider the condition that the infinite sequence α0 ∈ Ω∞

of outcomes which is obtained by an infinite reputa-
tion of trials described by the finite probability space
P0 ∈ P(Ω) is closed under the selection by a computable
selection function, as considered in the theory of col-
lectives [17, 18, 19, 20, 5]. Theorem 11 below confirms
that this condition certainly holds for every ensemble.
Thus, ensembles for P are closed under the selection
by a computable selection function. For the notion of
the selection by a computable selection function and
its meaning, see e.g., Downey and Hirschfeldt [6].

Theorem 11 (Closure property under the selection
by a computable selection function, Tadaki [14]). Let
P ∈ P(Ω), and let α be an ensemble for P . Let g be
a computable selection function, that is, let g : Ω∗ →
{YES,NO} be a computable function. Suppose that
g(α�k) is defined for every k ∈ N and {k ∈ N | g(α�k
) = YES} is an infinite set. Then the infinite sequence
αf := α(f(1))α(f(2))α(f(3))α(f(4)) . . . . . . is an en-
semble for P , where the computable function f : N+ →
N+ is defined by

f(n) = min{m ∈ N+ | #{k ≤ m | g(α�k) = YES} = n}+1.

5 Conditional Probability and the In-
dependence between Events

In this section, we operationally characterize the no-
tions of conditional probability and the independence
between events in a finite probability space in terms of
ensembles.

Let P ∈ P(Ω), and let A ⊂ Ω be an event in the
finite probability space P . For each ensemble α for
P , CA (α) is defined as the infinite binary sequence
such that, for every i, its ith element CA (α) (i) is 1 if
α(i) ∈ A and 0 otherwise. The pair (P,A) induces a
finite probability space C (P,A) ∈ P({0, 1}) such that
C (P,A) (1) = P (A) and C (P,A) (0) = 1− P (A). Note
that the notions of CA (α) and C (P,A) in our theory
together correspond to the notion of mixing in the the-
ory of collectives by von Mises [18]. We can then show
the following theorem.

Theorem 12 (Tadaki [14]). Let P ∈ P(Ω), and let
A ⊂ Ω. Suppose that α is an ensemble for the finite
probability space P . Then CA (α) is an ensemble for
the finite probability space C (P,A).

In order to prove Theorem 12, it is convenient to
prove the following theorem first, from which Theo-
rem 12 follows. For the proof of Theorem 13, see our
former work [14].

Theorem 13 (Tadaki [14]). Let P ∈ P(Ω). Let α be an
ensemble for P , and let a and b be distinct elements in
Ω. Suppose that β is the infinite sequence in (Ω−{b})∞
obtained by replacing all occurrences of b by a in α.
Then β is an ensemble for Q, where Q ∈ P(Ω − {b})
such that Q(d) = P (a)+P (b) if d = a and Q(d) = P (d)
otherwise.

We show that the notion of conditional probability
in a finite probability space can be represented by an
ensemble in a natural manner. For that purpose we
recall the notion of conditional probability in a finite
probability space.

Let P ∈ P(Ω), and let B ⊂ Ω be an event in the
finite probability space P . Suppose that P (B) > 0.
Then, for each event A ⊂ Ω, the conditional probability
of A given B, denoted by P (A|B), is defined as P (A ∩
B)/P (B). This notion defines a finite probability space
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PB ∈ P(B) such that PB(a) = P ({a}|B) for every
a ∈ B.

When an infinite sequence α ∈ Ω∞ contains infinitely
many elements from B, FilteredB (α) is defined as the
infinite sequence in B∞ obtained from α by eliminating
all elements in Ω−B occurring in α. If α is an ensem-
ble for the finite probability space P and P (B) > 0,
then α contains infinitely many elements from B due
to Theorem 5. Therefore, FilteredB (α) is defined in
this case. Note that the notion of FilteredB (α) in our
theory corresponds to the notion of partition in the
theory of collectives by von Mises [18].

We can then show Theorem 14 below, which states
that ensembles are closed under conditioning. For the
proof of the theorem, see Tadaki [14].

Theorem 14 (Closure property under conditioning,
Tadaki [14]). Let P ∈ P(Ω), and let B ⊂ Ω be an event
in the finite probability space P with P (B) > 0. For
every ensemble α for P , FilteredB (α) is an ensemble
for the finite probability space PB.

As an application of Theorem 14, we can consider
the Von Neumann extractor as follows.

Example 15 (Von Neumann extractor). Consider a
Bernoulli sequence in the sense of normal probability
theory. Recall that the Von Neumann extractor takes
successive pairs of consecutive bits from the Bernoulli
sequence. If the two bits matches, no output is gen-
erated. If the bits differs, the value of the first bit is
output. The Von Neumann extractor can be shown to
produce a uniform binary output. For the detail, see
[21].

In our framework, the Von Neumann extractor oper-
ates as follows: Let P ∈ P({0, 1}) and let α be an en-
semble for P . Then α can be regarded as an ensemble
for Q ∈ P({00, 01, 10, 11}) where Q(ab) = P (a)P (b) for
every a, b ∈ {0, 1}. Consider the event B = {01, 10}.
It follows from Theorem 14 that FilteredB (α) is an en-
semble for PB ∈ P({01, 10}) with PB(01) = PB(10) =
1/2. Namely, α is, in essence, Martin-Löf random.
Hence, a random individual infinite sequence is cer-
tainly extracted by the Von Neumann extractor in our
framework.

Let P ∈ P(Ω). For any events A,B ⊂ Ω in the
finite probability space P , we say that A and B are
independent if P (A ∩ B) = P (A)P (B). In the case
of P (B) > 0, A and B are independent if and only if
P (A|B) = P (A).

Theorem 16 below gives operational characterizations
of the notion of the independence between two events
in terms of ensembles. Let α, β ∈ Ω∞. We say that α
and β are equivalent if there exists P ∈ P(Ω) such that
α and β are both an ensemble for P . For the proof of
Theorem 16, see Tadaki [14].

Theorem 16 (Tadaki [14]). Let P ∈ P(Ω), and let
A,B ⊂ Ω be events in the finite probability space P .
Suppose that P (B) > 0. Then the following conditions
are equivalent to one another.

(i) The events A and B are independent.

(ii) For every ensemble α for the finite probability
space P , CA (α) is equivalent to CA∩B (FilteredB (α)).

(iii) There exists an ensemble α for the finite proba-
bility space P such that CA (α) is equivalent to
CA∩B (FilteredB (α)).

6 Independence of Random Variables

In this section, we operationally characterize the no-
tion of the independence of random variables in a finite
probability space in terms of ensembles.

A random variable on Ω is a function X : Ω → Ω′

where Ω′ is an alphabet. LetX1 : Ω→ Ω1, . . . , Xn : Ω→
Ωn be random variables on Ω. For any predicate F (v1, . . . ,
vn) with variables v1, . . . , vn, we use F (X1, . . . , Xn)
to denote the event {a ∈ Ω | F (X1(a), . . . , Xn(a))}.
We say that the random variables X1, . . . , Xn are in-
dependent if for every x1 ∈ Ω1, . . . , xn ∈ Ωn it holds
that P (X1 = x1 & . . . & Xn = xn) = P (X1 =
xn) · · ·P (Xn = xn).

Let α ∈ Ω∞, and X : Ω → Ω′ be a random variable
on Ω. We define X(α) as an infinite sequence β over
Ω′ such that β(i) = X(α(i)) for every i ∈ N+. Using
Theorem 13 we can show the following theorem.

Theorem 17 (Closure property under the mapping
by a random variable). Let X : Ω → Ω′ be a random
variable on Ω, and let P ∈ P(Ω). If α is an ensemble
for P then X(α) is an ensemble for P ′ ∈ P(Ω′) where
P ′(x) = P (X = x) for every x ∈ Ω′.

We introduce the notion of the independence of en-
sembles as follows. Let Ω1, . . . ,Ωn be alphabets. For
any α1 ∈ Ω∞1 , . . . , αn ∈ Ω∞n , we use α1 × · · · × αn to
denote an infinite sequence over Ω1×· · ·×Ωn such that
α(i) = (α1(i), . . . , αn(i)) for every i ∈ N+.

Definition 18 (Independence of ensembles). Let Ω1, . . . ,
Ωn be alphabets, and let P1 ∈ P(Ω1), . . . , Pn ∈ P(Ωn).
Let α1, . . . , αn be ensembles for P1, . . . , Pn, respectively.
We say that α1, . . . , αn are independent if α1 × · · · ×
αn is an ensemble for P ∈ P(Ω1 × · · · × Ωn) where
P (a1, . . . , an) = P1(a1) · · ·Pn(an) for every a1 ∈ Ω1, . . . ,
an ∈ Ωn.

Note that the notion of the independence of ensem-
bles in our theory corresponds to the notion of inde-
pendence of collectives in the theory of collectives by
von Mises [18]. The following theorem gives equivalent
characterizations of the notion of the independence of
random variables in terms of that of ensembles.

Theorem 19. Let X1 : Ω → Ω1, . . . , Xn : Ω → Ωn be
random variables on Ω, and let P1 ∈ P(Ω1), . . . , Pn ∈
P(Ωn). Then the following conditions are equivalent to
one another.

(i) The random variables X1, . . . , Xn are indepen-
dent.
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(ii) For every ensemble α for the finite probability
space P , the ensembles X1(α), . . . , Xn(α) are in-
dependent.

(iii) There exists an ensemble α for P such that the
ensembles X1(α), . . . , Xn(α) are independent.

In the rest of this section we consider the notion of
Martin-Löf P -randomness relative to an oracle. The
relativized computation is a generalization of normal
computation. Let β1, . . . , βm be arbitrary infinite se-
quences over an alphabet. In the relativized compu-
tation, a (deterministic) Turing machine is allowed to
refer to (β1, . . . , βm) as an oracle during the computa-
tion. Namely, in the relativized computation, a Turing
machine can query (k, i) at any time and then obtains
the response βk(i) during the computation. Such a Tur-
ing machine is called an oracle Turing machine. The
relativized computation is more powerful than normal
computation, in general.

We can define the notion of Martin-Löf P -test rel-
ative to β1, . . . , βm where the Turing machine which
computes the Martin-Löf P -test is an oracle Turing ma-
chine which can refer to the sequence β1, . . . , βm dur-
ing the computation. Using the notion of Martin-Löf
P -tests relative to β1, . . . , βm, we can define the notion
of Martin-Löf P -randomness relative to β1, . . . , βm in
the same manner as the second part of Definition 3.
Obviously, the following holds.

Proposition 20. Let β1, . . . , βm be infinite sequences
over an alphabet, and let P ∈ P(Ω). For every α ∈ Ω∞,
if α is Martin-Löf P -random relative to β1, . . . , βm,
then α is Martin-Löf P -random.

The converse does not necessarily hold. In the case
where α is Martin-Löf P -random, the converse means
that the Martin-Löf P -randomness of α is independent
of β1, . . . , βm in a certain sense.

For any P ∈ P(Ω), we say that P is computable if
P (a) is a computable real for every a ∈ Ω. The fol-
lowing theorem gives an equivalent characterization of
the notion of the Independence of ensembles in terms
of Martin-Löf P -randomness relative to an oracle. Its
proof is obtained by modifying the proof of van Lam-
balgen’s Theorem [15].

Theorem 21. Let P1 ∈ P(Ω1), . . . , Pn ∈ P(Ωn). Let
α1, . . . , αn be ensembles for P1, . . . , Pn, respectively. Sup-
pose that P1, . . . , Pn are computable. Then the ensem-
bles α1, . . . , αn are independent if and only if for every
k = 1, . . . , n it holds that αk is Martin-Löf Pk-random
relative to α1, . . . , αk−1, αk+1, . . . , αn.

Combining Theorem 19 with Theorem 21 we obtain
the following theorem.

Theorem 22. Let X1 : Ω → Ω1, . . . , Xn : Ω → Ωn be
random variables on Ω, and let P ∈ P(Ω). For each
k = 1, . . . , n, let Pk ∈ P(Ωk) be a finite probability
space such that Pk(x) = P (Xk = x) for every x ∈
Ωk. Suppose that P is computable. Then the following
conditions are equivalent to one another.

(i) The random variables X1, . . . , Xn are indepen-
dent.

(ii) For every ensemble α for P and every k = 1, . . . , n
it holds that Xk(α) is Martin-Löf Pk-random rel-
ative to X1(α), . . . , Xk−1(α), Xk+1(α), . . . , Xn(α).

(iii) There exists an ensemble α for P such that for
every k = 1, . . . , n it holds that Xk(α) is Martin-
Löf Pk-random relative to X1(α), . . . , Xk−1(α),
Xk+1(α), . . . , Xn(α).

7 Application to Cryptography

In this section, we make an application of our formal-
ism to cryptography by presenting new equivalent char-
acterizations of the notion of perfect secrecy in terms
of our formalism.

The notion of perfect secrecy plays a basic role in
cryptography. First, we review the definition of encryp-
tion schemes to which the notion of perfect secrecy is
applied.

Definition 23 (Encryption scheme). Let M, K, and
C be alphabets. An encryption scheme over a message
space M, a key space K, and a ciphertext space C, is
a tuple Π = (PK,Enc,Dec) such that (i) PK ∈ P(K),
(ii) Enc : M × K → C, (iii) Dec : C × K → M, and
(iv) Dec(Enc(m, k), k) = m for every m ∈ M and k ∈
K.

Let Π = (PK,Enc,Dec) be as in Definition 23, and let
Q ∈ P(M), which serves as a probability distribution
over message space M for the encryption scheme Π.
We consider a finite probability space PΠ,Q ∈ P(M×K)
defined by the condition that PΠ,Q(m, k) = Q(m)PK(k)
for every m ∈ M and k ∈ K. We then define random
variables MΠ,Q and CΠ,Q onM×K by MΠ,Q(m, k) =
m and CΠ,Q(m, k) = Enc(m, k), respectively. The no-
tion of perfect secrecy is then defined as follows.

Definition 24 (Perfect secrecy, Shannon [13]). LetM,
K, and C be alphabets. Let Π = (PK,Enc,Dec) be an en-
cryption scheme over a message space M, a key space
K, and a ciphertext space C. The encryption scheme
Π is perfectly secret if for every Q ∈ P(M) it holds
that the random variables MΠ,Q and CΠ,Q are inde-
pendent.

Using Theorems 19 and 22 we can show the follow-
ing theorem, which characterizes the notion of perfect
secrecy in terms of the notions of the independence of
ensembles and Martin-Löf P -randomness relative to an
oracle.

Theorem 25 (New equivalent characterizations of per-
fect secrecy). Let M, K, and C be alphabets. Let Π =
(PK,Enc,Dec) be an encryption scheme over a message
space M, a key space K, and a ciphertext space C. For
each Q ∈ P(M), let RQ ∈ P(C) be a finite probabil-
ity space such that RQ(c) = PΠ,Q(CΠ,Q = c) for every
c ∈ C. Suppose that PK is computable. Then the fol-
lowing conditions are equivalent to one another.
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(i) The encryption scheme Π is perfectly secret.

(ii) For every Q ∈ P(M) and every ensemble α for
PΠ,Q, the ensembles MΠ,Q(α) and CΠ,Q(α) are
independent.

(iii) For every Q ∈ P(M) there exists an ensemble α
for PΠ,Q such that the ensembles MΠ,Q(α) and
CΠ,Q(α) are independent.

(iv) For every computable Q ∈ P(M) and every en-
semble α for PΠ,Q it holds that MΠ,Q(α) is Martin-
Löf Q-random relative to CΠ,Q(α), and CΠ,Q(α)
is Martin-Löf RQ-random relative to MΠ,Q(α)

(v) For every computable Q ∈ P(M) there exists an
ensemble α for PΠ,Q such that MΠ,Q(α) is Martin-
Löf Q-random relative to CΠ,Q(α), and CΠ,Q(α)
is Martin-Löf RQ-random relative to MΠ,Q(α).

Note that the finite probability space PK, which serves
as a probability distribution over key space K, is nor-
mally computable in modern cryptography.
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