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Abstract— In modern cryptography, the generic group model is used as an imaginary framework
in which the security of a cryptographic scheme is discussed. In particular, the generic group model is
often used to discuss the computational hardness of problems, such as the discrete logarithm problem
and the Diffie-Hellman problem, which are used as a computational hardness assumption to prove the
security of a cryptographic scheme. In this paper, we apply the concepts and methods of algorithmic
randommness to the generic group model, and consider the secure instantiation of the generic group,
i.e., a random encoding of the group elements. We show that the generic group can be instantiated
by a specific computable function while keeping the computational hardness originally proved in the

generic group model.
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1 Introduction

In modern cryptography, the generic group model
is used as an imaginary framework in which the secu-
rity of a cryptographic scheme is discussed. In par-
ticular, the generic group model is often used to dis-
cuss the computational hardness of problems, such as
the discrete logarithm problem and the Diffie-Hellman
problem, which are used as a computational hardness
assumption to prove the security of a cryptographic
scheme. Since the generic group, i.e., a random en-
coding of the group elements, is an imaginary object,
even if the security of a cryptographic scheme or the
hardness of a computational problem is proved in the
generic group model, the generic group has to be in-
stantiated using a concrete finite cyclic group whose
group operations are efficiently computable if we want
to use the cryptographic scheme in the real world. Once
the generic group is instantiated, however, the original
security proof or hardness proof in the generic group
model is spoiled and goes back to square one. Actually,
it is not clear how much the instantiation can maintain
the security or hardness originally proved in the generic
group model, nor is it clear whether the generic group
can be instantiated somehow while keeping the original
security or hardness.

In the present paper we investigate this problem,
based on concepts and methods of algorithmic random-
ness, also known as algorithmic information theory. In
algorithmic randomness, the notion of a random real
plays a central role. It is an individual infinite binary
sequence which is classified as “random”, and not a ran-
dom variable such as the generic group. Algorithmic
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randomness enables us to classify an individual infinite
binary sequence into random or not. It originated in
the groundbreaking works of Solomonoff, Kolmogorov,
and Chaitin in the mid-1960s. They independently in-
troduced the notion of program-size complezity, also
known as Kolmogorov complexity, in order to quantify
the randomness of an individual object. In the 21st
century, algorithmic randomness is making remarkable
progress through close interaction with recursion the-
ory [11, 4].

In this paper we show that the generic group can be
instantiated by a specific computable function while
keeping the computational hardness originally proved
in the generic group model.

In our former works [13, 14] we investigated the se-
cure instantiation of the random oracle in the random
oracle model [2]. In [13] we investigated the instantia-
tion of the random oracle by a random real in a cryp-
tographic scheme already proved secure in the random
oracle model. In this line we presented equivalent con-
ditions for a specific oracle instantiating the random
oracle to keep a cryptographic scheme secure, using a
concept of algorithmic randomness, i.e., a variant of
Martin-Lof randomness. Based on this, in particular
we showed that the security proved in the random or-
acle model is firmly maintained after instantiating the
random oracle by a random real.

In the sequel [14] we introduced the notion of ef-
fective security, which is a constructive strengthen of
conventional (non-constructive) notions of security. We
considered signature schemes in the random oracle model,
and showed that some specific computable function can
instantiate the random oracle while keeping the effec-
tive security originally proved in the random oracle
model. We demonstrated that the effective security is a
natural alternative to the conventional security notions



in modern cryptography by reconsidering the security
notions required in modern cryptography.

In this paper, we show that the same concepts and
methods which we developed for investigating the se-
cure instantiation of the random oracle can be properly
applied to the problem of the secure instantiation of the
generic group.

2 Preliminaries

We start with some notation about numbers and
strings which will be used in this paper. #5S5 is the
cardinality of S for any set S. N = {0,1,2,3,...} is
the set of natural numbers, and N7 is the set of posi-
tive integers. Q is the set of rational numbers, and R
is the set of real numbers. For any integer N > 2, Zy
denotes the additive group of integers modulo N and
sometimes the set {0,1,..., N —1}.

{0,1}* is the set of finite binary strings. For any
x € {0,1}*, |z| is the length of x. For any n € N, we
denote by {0,1}" the set {z | z € {0,1}* & |z| = n}.

3 Lebesgue Outer Measure on Families
of Encoding Functions

Let n € Nt. An encoding function into n bitstrings
is a bijective function mapping {0,1,...,2" — 1} to
{0,1}™. We denote by Encf,, the set of all encoding
functions into n bitstrings. Note that #Encf,, = (2™)!.

A family of encoding functions is an infinite sequence
{on}nen+ such that o, is an encoding function into n
bitstrings for every n € N*. A family of encoding func-
tions serves as an instantiation of an infinite sequence
of the generic groups over all security parameters. We
denote by Encf™ the set of all families of encoding func-
tions. Namely,

Encf™ = H Encfi = Encfy x Encfy x Encfg x -+ --- )
k=1

On the other hand, a finite family of encoding func-
tions is a finite sequence s = (o1,...,0,) such that
ok is an encoding function into k bitstrings for every
k=1,...,n. Here, n is called the length of s and de-
noted by |s|. A finite family of encoding functions is
an initial segment (finite prefix) of a family of encoding
functions. For each n € N, we denote by Encf™ the set
of all finite families of encoding functions of length n.
Namely,

n
Encf” := H Encf,, = Encf; x - -+ x Encf,,.
k=1

Note that Encf’ = {\} where \ := () is the empty se-
quence. We denote by Encf™ the set of all finite families
of encoding functions, i.e., Encf* := (J)~, Encf". For
any sequences s = (01,...,0p,) and t = (T1,...,7m)
in Encf*, we say that s is a prefiz of t if n < m and
or = T for all K < n. A subset P of Encf” is called
prefix-free if no sequence in P is a prefix of another
sequence in P.

In this paper we use the notion of Lebesgue outer
measure on Encf®, which is defined as follows. For
any sequence s = (01,...,0,) € Encf*, I(s) is defined
as the set of all families {7y },en+ of encoding functions
for which oy, = 7, for all k < n, and |I(s)| is defined by

1 = | I = ’
[1(s)] P #Encf,  #Encfy x -+ x #Encf,

Note that I(A) = Encf™ and |I(\)| = 1. Lebesgue outer
measure L on Encf™ is a function mapping any subset
A of Encf*™ to a non-negative real, and is defined by

L(A):=1inf > |I(sn)],

where the infimum extends over all infinite sequences
$1,82,... € Encf” for which A C (J;—, I(sn).

In this paper, we use the properties of £ presented
in Proposition 3.1 below. For any subset T' of Encf”,
we denote by [T]~ the set (J,op I(s).

Proposition 3.1.

(i) For every prefiz-free set P C Encf”,

L(P17) = ()l

seP
Therefore £ () = £ ([0]7) = 0 and £ (Encf>) =
L) =1.
(i) L(A) < L(B) for every sets A C B C Encf*™.

(i) L£(U; Ai) <>, L(A;) for every sequence { A;}ien
of subsets of Encf™.

(iv) L(U;[B]7) = S, L([P]7) for every finite or
infinite sequence {P;}; of subsets of Encf™ such
that [P;]~ N [P;]~ = 0 for every i # j. O

A function f: N — Q is called computable if there
exists a deterministic Turing machine which on every
input n € N halts and outputs f(n). A computable
function is also called a total recursive function. A
real a is called computable if there exists a computable
function g: N — Q such that |a — g(k)| < 27F for all
k € N. For any subset S of Encf*, we say that S is
recursively enumerable (r.e., for short) if there exists
a deterministic Turing machine which on every input
s € Encf* halts if and only if s € S. Note here that
any sequence in Encf” is a finite object, which can be
represented as a finite binary string, and thus can be
manipulated by a Turing machine. Finally, a family
{on tnen+ of encoding functions is called computable if
there exists a deterministic Turing machine which on
every input (n,z) with 0 < & < 2"—1 halts and outputs
on ().

Theorem 3.2 below plays a crucial role in this pa-
per. It is a modification of the result presented as
Exercise 1.9.21 in Nies’s textbook [11] of algorithmic
randomness. We can prove this theorem based on the
properties of £ in Proposition 3.1, as well as the com-
putability of the mapping N* > n — #Encf,,.



Theorem 3.2. Let S be an r.e. subset of Encf*. Sup-
pose that L ([S]<) < 1 and L ([S]7) is a computable
real. Then there exists a computable family of encoding

functions which is not in [S]~.

Proof. We define F': Encf* — [0, 1] by
Ft)=L([S]"nI).

First, we show that the real-valued function F' is com-
putable, i.e., there exists a computable function f: Encf*
XN — Q such that

[F(t) — f(t, k) < 27" (1)

for all t € Encf” and k € N.
Let n € N. Since J;cgner, I(t) = Encf™ we have

U 1701 =[s1"

teEncf,,

and ([S]"NI()) N ([S]"NI()) = 0 for any distinct
t,t" € Encf,,. Note that, for every ¢t € Encf®, there is
S’ C Encf* such that [S]™ N I(t) = [S]7.} It follows
from (iv) of Proposition 3.1 that

Y Flw=c(s7) (2)

u€Encf,

for every n € N.

Since S is an r.e. set, there is a deterministic Turing
machine which enumerates S, i.e., there is a determin-
istic Turing machine which on every input m € N¥
outputs a finite subset S, of S, where S,, C Sp11
for every m € NT and Ufnozl Sm = S. Therefore, for
each ¢t € Encf”, we have S,, N I(t) C Spm41 N I(t) for
every m € NT and | Jo_; (S N1I(t)) = SNI(t). Using
(ii) and (iv) of Proposition 3.1 it is easy to show that,
for each t € Encf™, L (S,, N I1(t)) < L (Spmy1NI(t)) for
every m € Nt and lim, oo £ (S NI(t)) = F(t). Tt
follows from (2) that, for each n € N,

> L(SmNI(u)

u€Encf,

< F(t)+ >

u€Encf,, and u#t

< £(s7)

L(SnnIw)  (3)

for every m € N* and

dim Y L(SmnIw)=L(S]7).  (4)
u€Encf,,

Note that, any given finite set P C Encf*, one can
compute a finite prefix-free set @ C Encf” such that
[Q]™ = [P]™. 1t follows from (i) of Proposition 3.1 and
the computability of the mapping Nt > | — #Encf,
that, any given n and ¢, one can compute the rational
L (S, NI(t)). Therefore, any given n and m, one can
compute the rational 3, cgo¢ £ (Sm N I(u)).

L Assuch S’, the set TU{s € S | t is a prefix of s} suffices, where
T = {t} if there is a prefix s € S of t and T' = ) otherwise.

Now, since L (S) is a computable real by the assump-
tion, there exists a computable function g: N — Q such
that

1£(1S17) — (k)] < 27* (5)

for all k € N. It follows from (4) that there exists a
computable function h: Encf* x N — N7 such that, for
every t € Encf* and k € N,

gy =27% < 3" L (Sheew NI(w).

u€Encf |y

But, by (3) and (5), the right-hand side is at most

F(t) + >

u€Encf,, and u#t

L (Sheey NI(w) < g(k) +27%

Thus we define a function f: Encf* x N — Q by

ft k) =gk)— Y

u€Encf,, and u#t

L (Sh(t,k) N I(u)) .

We then see that the rational-valued function f is com-
putable and (1) holds, as desired.

Next, we construct a computable family {0, },en+
of encoding functions such that

1
#Encfy,

L(S"NI((o1,-..,om) <[]
k=1

holds for all m € N. We do this by the following induc-
tive procedure: We first note by (ii) and (i) of Propo-
sition 3.1 that

L(SITNI®) <LUE)=[1t)]
O 1 (7)
1};[1 #Encfy,

holds for every m € N and t € Encf™. Since

U I((m,.. 2y Tm))

TEENncf 41

Ty T)) = I((71, ...

holds for every m € N and (7,...,7,) € Encf™, we
also note by (iv) of Proposition 3.1 that

Z L ([S]< ﬂ]((Th...,Tm,T)))

TEENncf 41 (8)

=L ([S]'< NI((r,... ,Tm)))

for every m € N and (71,...,7,) € Encf™. Let s, =
(01,...,0p) € Encf” for each n € N.

Initially, we set n := 0 and s, := A. Then, obviously,
the property (6) holds for m = n, which is exactly the
assumption £ ([S]7) < 1 of the theorem.

For an arbitrary n € N, assume that we have con-
structed s, = (01,...,0,) and (6) holds for m = n. It
follows from (7) with m = n + 1 and (6) with m =n

that
n+1 1

F((o1,...,0m,m)) < ]
k=1

- #Encfy, 9)



for some 19 € Encf, 1. Since F' is a computable real
function, by computing the approximation of F'((o1, ...,
On, T)) with an arbitrary precision for each 7 € Encf,, 41,
one can find 7y for which (9) holds, and then set 7,1 :=
7o and $p41 := (01,...,0n,70). It follows that (6) holds
for m=n+1.

Thus, any given n € NT, one can compute o, by
the above procedure. This implies that the family
{on}nen+ of encoding functions is computable.

Now, assume contrarily that {o,, }nent € [S]”. Then
there is n € N such that (oq,...,0,) € S. It follows
that

L([S"nI((oy,...

,on))) = L(I((01,---,00)))

_ ﬁ 1
P #Encf;,’

However, this contradicts (6) with m = n. Hence we
have {0, }nent ¢ [S]”, and the proof is completed. [

4 The Discrete Logarithm Problem

In this section we consider the hardness of the dis-
crete logarithm problem in the generic group model.
We show that the generic group can be securely in-
stantiated by a deterministic and computable one.

We first review the notion of generic algorithm [12].
A generic algorithm is a probabilistic oracle Turing ma-
chine A which behaves as follows: Let n € NT, and let
o be an encoding function into n bitstrings and N a
positive integer with N < 27.

(i) Atakesasinputalist o(x1),...,0(xg) with 21, . ..
xp € Zn, as well as (the binary representations
of) N and its prime factorization.

(ii) As Ais executed, it is allowed to make calls to or-
acles which compute the functions add: o(Zy) x
o0(Zy) — o0(Zy) and inv: 0(Zy) — o(Zy) with

add(o(x),0(y)) = o(z+y) and inv(o(z)) = o(—x).

(iii) Eventually, A halts and outputs a finite binary
string, denoted by A(N;o;x1,...,xk).

Consider the following experiment for a polynomial-
time generic algorithm A, a parameter n, and a positive
integer N < 2™:

The discrete logarithm experiment DLog 4(n, N):

1. Generate an encoding function o into n bitstrings
uniformly.

2. Generate x € Zn uniformly.
3. The output of the experiment is defined to be 1 if
A(N;o;1,2) =z and 0 otherwise.

Shoup [12] showed the following lower bound for the
hardness of the discrete logarithm problem in the generic
group model.

Theorem 4.1 (Shoup [12]). There exists C € NT such
that, for every generic algorithm A, n € NT, and N
with2 < N <2™ —1,

Cm?

Pr[DLog 4(n,N) =1] < ,
p

where p is the largest prime divisor of N and m is the
mazimum number of the oracle queries among all the
computation paths of A. O

Next, consider the following experiment for a polynomial-

time generic algorithm A, a parameter n, and an en-
coding function ¢ into n bitstrings:

The discrete logarithm experiment DLog 4(n,0):
1. Generate an n-bit prime p uniformly.
2. Generate x € Z, uniformly.

3. The output of the experiment is defined to be 1 if
A(p;o;1,2) =z and 0 otherwise.

The hardness of the discrete logarithm problem in
the generic group model is then formulated as follows.

Definition 4.2. We say that the discrete logarithm
problem is hard in the generic group model if for all
polynomial-time generic algorithms A and all d € Nt
there exists N € NT such that, for alln > N,

1
#Encf,,

1
P = —.

r[DLog 4(n,0) =1] < 3
o€Encf,

O

In this paper we consider a stronger notion of the
hardness of the discrete logarithm problem than that
given by Definition 4.2 above. This stronger notion,
called the effective hardness of the discrete logarithm
problem, is defined as follows: We first choose a partic-
ular recursive enumeration A1, Ao, As, . ..
time generic algorithms. It is easy to show that such
an enumeration exists. In fact, the kth polynomial-
time generic algorithm Ay can be chosen as a generic
algorithm obtained by executing the kth generic algo-
rithm M, in at most n* +k steps, where n is the length
of the input of My. We use this specific enumeration
as the standard one throughout the rest of this paper.

Definition 4.3. We say that the discrete logarithm
problem is effectively hard in the generic group model
if there exists a computable function f: NT x Nt — N¥
such that, for all i,d,n € NT, if n. > f(i,d) then

1
#Encf,,

1
Z Pr[DLog 4 (n,0) = 1] < v

o€Encf,,
O

Theorem 4.4. The discrete logarithm problem is ef-
fectively hard in the generic group model. O

of all polynomial-



In order to prove Theorem 4.4, we need the following
lemma.?

Lemma 4.5. Let d > 4. Then 2™ > n? for all n > d>.
Proof. We first show that
24 > ¢? (10)

by induction. Obviously, 2¥ > k2 holds for k = 4. For
an arbitrary k > 4, assume that 2k > k2 holds. Then
2F+1 > 2k2 > (k + 1)%, where the second inequality
follows from the inequality Vor >z +1 for all z >
V2 + 1. Thus (10) holds.

Now, we show that

2" > nd (11)

holds for all n > d? by induction. First, it follows from
(10) that 2¢° > (d2)9, which implies that (11) holds
for n = d?. For an arbitrary k > d?, assume that (11)
holds for n = k. We note that 2/¢ — 1 > In2/d >
1/(2d) > 1/d?, where the first inequality follows from
the mean-value theorem. Then, since k > d?, we see
that 20+1)/d > 91/dk > k4 k/d? > k4 1. This implies
that (11) holds for n = k + 1. Thus, (11) holds for all
n > d2. O

Then the proof of Theorem 4.4 is given as follows.

Proof of Theorem 4.4. Let k € N*, and consider the
kth generic algorithm Ag. Since the number of oracle
queries along any computation path of A is bounded
to the above by n* +k, it follows from theorem 4.1 that
there exists C' € N* such that, for every n € N* and
n-bit prime p,

C(n* + k)2 < C(n* + k)2
D - on—1 :

Pr[Dlog 4, (n,p) = 1] <

Therefore, for every n > max{k,2C},

1 n2k:+1
ZEncf Pr[DlLogy, (n,0) = 1] < on (12)
" 5€Encf,
Note by Lemma 4.5 that, for each d € NT,
n2k+1 1
on < nd (13)

for every n > (2k +d + 1)2.

Thus we define a function f: Nt x Nt — NT by
f(k,d) = max{(2k + d + 1)2,2C}. Then f is com-
putable, and it follows from (12) and (13) that, for all
k,d,n € N* if n > f(k,d) then

1
#Encf,,

1
> PrDlogy, (n,0) =1] < 5

o€Encf,,

This completes the proof. O

2 In order to prove Theorem 4.4, it is suffice to use the inequality
2" > n? which holds for all n > ((d 4+ 1)/In2)¢*! and not for
all n > d? as in Lemma 4.5. The former follows immediately
from the inequality e > x which holds for all z € R. However,
we prefer a more “insightful” polynomial lower bound n > d?
than the super-exponential lower bound n > ((d+1)/In2)d+1.
See Section 6 for further remarks.

The hardness of the discrete logarithm problem in
the generic group model given by Definition 4.2 follows
immediately from Theorem 4.4.

Corollary 4.6. The discrete logarithm problem is hard
in the generic group model. O

We are interested in the instantiation of the generic
group in the discrete logarithm problem. Thus, it is
convenient to define the hardness of the discrete loga-
rithm problem relative to a specific family of encoding
functions.

Definition 4.7. Let {0, }nen+ be a family of encoding
functions. We say that the discrete logarithm problem
is hard relative to {oy, }pen+ if for all polynomial-time
generic algorithms A and all d € Nt there erists N €
NT such that, for alln > N,

1
Pr[DLog 4(n,0) =1] < i
O

The corresponding effective hardness is defined as
follows.

Definition 4.8. Let {0, }nen+ be a family of encoding
functions. We say that the discrete logarithm problem
is effectively hard relative to {o, }nen+ if there exists a
computable function f: Nt x NT — NT such that, for
all i,d,n € NT, if n. > f(i,d) then

1
Pr[DLog 4 (n,0) = 1] < v
O

Theorem 4.9 (main result I). There exists a com-
putable family of encoding functions relative to which
the discrete logarithm problem is effectively hard. [

While the proof of Theorem 4.9 is mainly based on
Theorem 3.2, we also need Lemmas 4.10 and 4.11 be-
low.

Lemma 4.10. Let fy,..., fn be reals. Suppose that
% Zfil fi <e. Then, for every a > 0, the number of
i for which ae < f; is less than N/a.

Proof. We prove the contraposition of Lemma 4.10.
Assume that the number of i for which ae < f; is at
least N/a. Then Zf\; fi > aeN/a = N and there-

fore LN fi>e. O

Lemma 4.11. Let d > 2. Then Y ;o 1/k% <2/n for
every n € NT,

Proof. In the case of n > 2, we have

<1 °°/’<f 1 /°° 1
— < — = —dx

1
T {d-1)(n—1)d1 (4
< ot 2
“n—-1"n-n/2 n



On the other hand, in the case of n = 1, using (14) we
have

1 = 1 2 2
> =1 27§ ty=2=—.
k=n
Thus >°p2, 1/k% < 2/n holds in any case. O

The proof of Theorem 4.9 is then given as follows.

Proof of Theorem 4.9. First, by Theorem 4.4 there ex-
ists a computable function f: NT x N* — N* such
that, for all 4,d,n € Nt if n > f(i,d) then

1 1
Pr[Dlog 4,(n,0) = 1] < —.
#Eann o€Encf, n

It follows from Lemma 4.10 that, for all i,d,n € NT, if
n > f(i,2d) then
o)
od
)

In order to apply the method of algorithmic random-
ness, i.e., Theorem 3.2, for each i,d,n € N* we define
a subset [C'Ldm]< of Encf™ as the set of all families
{on}nen+ of encoding functions such that

# {a € Encf,, | Pr[DLogy, (n,0) = 1] >

#Encf,,
< N

n

Pr[DLog 4, (n, o) = 1] > (16)

nd
Namely, we define a subset C; 4., of Encf” as the set
of all finite families (o1, ...,0,) of encoding functions
where only o,, is required to satisfy the inequality (16).
Since C; 4., is a prefix-free set for every i,d,n € NT,
it follows from (i) of Proposition 3.1 and (15) that, for
each i,d,n € N*, if n > f(i,2d) then

L(Cian]™) = > |I(s)

s€Ci,d,n

1
<. (17)

We choose a particular computable bijection p: NT —

{(i,d) | i € Nt & d > 2}, and define (¢1(m), p2(m)) =
©(m). We then define a computable function g: N* —
N* by g(m) = {f(¢1(m),2¢2(m)) + 1} 1. For each
m € NT, we define a subset C,, of {0,1}* by

U Coitmpatmin: (18)

n=g(m)
It follows from (iii) of Proposition 3.1, (17), and Lemma
4.11 that, for each m € N*,
L([Cn]™) <
(19)

We then define C' by

= D Ci. (20)

Therefore, using (iii) of Proposition 3.1,

<> £([Cn Zim:. (21)

m=1

Next we show that C' is an r.e. subset of Encf*. It is
easy to see that, given ¢, d, and n, one can decide the
finite subset C; 4, of Encf”, since the dyadic rational
Pr[DLog 4,(n,0) = 1] is computable, given i, n, and
an encoding function ¢ into n bitstrings. Thus, since
¢ and g are computable functions, it follows from (18)
and (20) that C is an r.e. subset of Encf™.

We then show that £ ([C]™) is a computable real.
For each k € N, we define a finite subset Dy, of C' by

k g(m)2k71

=UJ U Gmemmn

m=1 n=g(m)

Given k € N, one can decides the finite set Dy, since ¢
and g are computable functions and moreover one can
decide the finite set C; 4., given 4, d, and n. There-
fore, given k € N, one can calculate the dyadic rational
L ([Dy]™) based on (i) of Proposition 3.1. On the other
hand, note that

U U Clor(m).pa(m)n

m=1n=g(m)2*

C\ch

Uc

m=k+1

Thus, using (ii) and (iii) of Proposition 3.1, (17), Lemma
4.11, and (19) we see that, for each k € N,

L([C\ Di]™)

k )
Z ( 901(m)<P2(mn )
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Therefore, since [C]~ = [Dyy1]~ U[C\ Dys1]”, using
(ii) and (iii) of Proposition 3.1 we have

£ ([c1)

for each k € N. Hence, £ ([Cﬁ) is a computable real.

Now, it follows from Theorem 3.2 that there ex-
ists a computable family {o,},en+ of encoding func-
tions which is not in [C]~. Let i,d,n € Nt with
n > g(¢~1(i,d+1)). We then define m = ¢~1(i,d+1),
ie., p(m) = (i,d+1). Since {0y }nent ¢ [C]™ and n >
g(m), it follows from (20) and (18) that {op}nen+ €

[C’cpl(’m),tpg(’m),n]< = [C’i,d—i-l,n]<

— L([Dea] )| < L([C\ Dgya]™) <27F

Therefore, we see



that the family {0y, },en+ of encoding functions sat-
isfies that Pr[DLog, (n,0,) = 1] < 1/n%* < 1/n? for
each n € N*. Thus, since the mapping N* x NT >
(i,d) — g(¢~t(i,d + 1)) is a computable function, it
follows from Definition 4.8 that the discrete logarithm
problem is effectively hard relative to {0y, }pen+. O

Corollary 4.12. There exists a computable family of
encoding functions relative to which the discrete loga-
rithm problem is hard.

Proof. The result follows immediately from Theorem 4.9.

O

5 The Diffie-Hellman Problem

In this section we consider the hardness of the com-
putational Diffie-Hellman (CDH) problem in the generic
group model. We can show the analogues of all the re-
sults in the previous section for the CDH problem, in
place of the discrete logarithm problem. In this section,
in particular we present the analogues of Theorem 4.9
and Corollary 4.12 for the CDH problem.

We first recall the analogue of Theorem 4.1 for the
CDH problem. We thus consider the following experi-
ment for a polynomial-time generic algorithm A, a pa-
rameter n, and a positive integer N < 2™:

The computational Diffie-Hellman experiment
CDH 4(n, N):

1. Generate an encoding function o into n bitstrings
uniformly.

2. Generate x € Zy uniformly.
3. Generate y € Zy uniformly.

4. The output of the experiment is defined to be 1 if
A(N;o0;1,2,y) = o(xzy) and 0 otherwise.

Shoup [12] showed the following lower bound for the
hardness of the CDH problem in the generic group
model, which is the analog of Theorem 4.1.

Theorem 5.1 (Shoup [12]). There exists C € NT such
that, for every generic algorithm A, n € NT, and N
with2 < N <2n —1,

2
Pr[CDHA(n, N) = 1] < 27
p

where p is the largest prime divisor of N and m is the
mazimum number of the oracle queries among all the
computation paths of A. O

Now, consider the following experiment for a polynomial-

time generic algorithm A, a parameter n, and an en-
coding function ¢ into n bitstrings:

The computational Diffie-Hellman experiment
CDH4(n,0):

1. Generate an n-bit prime p uniformly.

2. Generate x € Z, uniformly.
3. Generate y € Z,, uniformly.

4. The output of the experiment is defined to be 1 if
A(p;o;1,2,y) = o(zy) and 0 otherwise.

Then the hardness of the CDH problem relative to a
specific family of encoding functions is defined as fol-
lows.

Definition 5.2. Let {0, }nen+ be a family of encod-
ing functions. We say that the CDH problem is hard
relative to {o, }nen+ if for all polynomial-time generic
algorithms A and all d € NT there exists N € NT such
that, for allm > N,

1
Pr[CDH4(n,0) =1] < v

O

The corresponding effective hardness is defined as
follows.

Definition 5.3. Let {0, }hen+ be a family of encoding
functions. We say that the CDH problem is effectively
hard relative to {0y, }hen+ if there exists a computable
function f: NT x Nt — Nt such that, for all i,d,n €
N*, if n > f(i,d) then

1
Pr[CDH4,(n,0) =1] < ol

O

Based on Theorem 5.1, we can show the following
analogue of Theorem 4.9 in the same manner as the
proof of Theorem 4.9.

Theorem 5.4 (main result IT). There exists a com-
putable family of encoding functions relative to which
the CDH problem is effectively hard. O

Corollary 5.5. There exists a computable family of
encoding functions relative to which the CDH problem
is hard. O

6 Concluding Remarks

In this section, we first see that the effective hard-
ness notions introduced in the previous two sections
are a natural alternative to the conventional hardness
notions in modern cryptography. In this section, we
consider the effective hardness notions for the discrete
logarithm problem in particular. The same remarks
apply to the effective hardness notions for the CDH
problem.

On the one hand, in Definitions 4.2 and 4.7 for the
conventional hardness of the discrete logarithm prob-
lem, the number N is only required to exist, depending
on a polynomial-time generic algorithm 4 and a num-
ber d, that is, the success probability of the attack by
A against the discrete logarithm problem on a security
parameter n is required to be at most than 1/n¢ for



all sufficiently large n, where the lower bound of such
n is not required to be computable from A and d. On
the other hand, in Definitions 4.3 and 4.8 for the ef-
fective hardness of the discrete logarithm problem, it
is required that the lower bound N of such n can be
computed from the code of A and d.

In modern cryptography based on computational se-
curity, it is important to choose the security parameter
n of a cryptographic scheme as small as possible to the
extent that the security requirements are satisfied, in
order to make the efficiency of the scheme as high as
possible. For that purpose, it is desirable to be able to
calculate a concrete value of N, given the code of A and
d, since N gives a lower bound of the security parame-
ter for which the security requirements specified by A
and d are satisfied. This results in the notion of effec-
tive hardness. Thus the notions of effective hardness
are considered to be more desirable than the notions of
conventional hardness in modern cryptography.

In the above we have demonstrated the validity of
the effective hardness notions in modern cryptography.
However, it would seem more natural to require that
the functions f: N* x N* — N¥ in Definitions 4.3
and 4.8 are polynomial-time computable rather than
simply computable. We call this type of effective hard-
ness polynomial-time effective hardness. In Theorem 4.4
we have shown that the discrete logarithm problem is
effectively hard in the generic group model. In the
proof of Theorem 4.4, the function f has the form
f(i,d) = max{(2i +d+1)%2C}. This is a polynomial-
time computable function. Thus, the proof of The-
orem 4.4 actually shows that the discrete logarithm
problem is polynomial-time effectively hard in the generic
group model.

Conjecture 1 below is a polynomial-time effective
version of Theorem 4.9, which states that the discrete
logarithm problem is hard in the standard model for
some finite cyclic group. In the future, it would be
challenging to prove Conjecture 1 (or its appropriate
modification) with identifying an appropriate compu-
tational assumption COMP which is weaker than the
hardness of the discrete logarithm problem itself.

Conjecture 1. Under the assumption COMP, there
erists a polynomial-time computable family of encod-
ing functions (or a polynomial-time computable fam-
ily of families of encoding functions) relative to which
the discrete logarithm problem is polynomial-time ef-
fectively hard. O
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