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Kohtaro Tadaki*

Abstract— In this paper we investigate the problem of se-
cure instantiation of the random oracle, based on the con-
cepts and methods of algorithmic randomness. We show
that, for any secure signature scheme in the random ora-
cle model, there exists a specific computable function which
can instantiate the random oracle while keeping the security
originally proved in the random oracle model. Our results
use the general form of definitions of security notions for
signature schemes, and depend neither on specific schemes
nor on specific security notions.
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1 Introduction

In modern cryptography, the random oracle model
is widely used as an imaginary framework in which the
security of a cryptographic scheme is discussed. In the
random oracle model, the cryptographic hash function
used in a cryptographic scheme is formulated as a ran-
dom variable uniformly distributed over all possibility
of the function, called the random oracle, and the legit-
imate users and the adversary against the scheme are
modeled so as to get the values of the hash function not
by evaluating it in their own but by querying the ran-
dom oracle [1]. Since the random oracle is an imaginary
object, even if the security of a cryptographic scheme is
proved in the random oracle model, the random oracle
has to be instantiated using a concrete cryptographic
hash function such as the SHA hash functions if we
want to use the scheme in the real world. In fact, the
instantiations of the random oracle by concrete crypto-
graphic hash functions are widely used in modern cryp-
tography to produce efficient cryptographic schemes.
Once the random oracle is instantiated, however, the
original security proof in the random oracle model is
spoiled and goes back to square one. Actually, it is
not clear how much the instantiation can maintain the
security originally proved in the random oracle model,
nor is it clear whether the random oracle can be instan-
tiated somehow while keeping the original security.

In the present paper we investigate this problem,
based on concepts and methods of algorithmic random-
ness, also known as algorithmic information theory. In
algorithmic randomness, the notion of a random real
plays a central role. It is an individual infinite binary
sequence which is classified as “random”, and not a ran-
dom variable such as the random oracle. Algorithmic
randomness enables us to classify an individual infinite
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binary sequence into random or not. It originated in
the groundbreaking works of Solomonoff, Kolmogorov,
and Chaitin in the mid-1960s. They independently in-
troduced the notion of program-size complexity, also
known as Kolmogorov complexity, in order to quantify
the randomness of an individual object. In the 21st
century, algorithmic randomness is making remarkable
progress through close interaction with recursion the-
ory [5, 3].

To summarize our contributions, we first review the
security proof in the random oracle model (see e.g. Katz
and Lindell [4, Chapter 13] for the detail). In the ran-
dom oracle model, a cryptographic scheme II relies on
an oracle h which is a certain type of function mapping
finite strings to finite strings, depending on a security
parameter n. Let Hash,, denote the set of all such func-
tions h on a security parameter n. Then the random
oracle is the sequence {H,} of random variables such
that each H,, is uniformly distributed over functions
in Hash,,. Now, in order to introduce a security no-
tion, such as CCA-security for encryption schemes and
EUF-ACMA security for signature schemes, into the
scheme II, we first consider an appropriately designed
experiment Expt gm, rm, defined for II and any adver-
sary A, where Il and A are both allowed to have an
oracle access to H,. Then a definition of security for
IT in the random oracle model takes the following gen-
eral form: the scheme II is secure in the random oracle
model if, for all probabilistic polynomial-time adver-
saries A4 and all d € N* there exists N € NT such that,
foralln > N,

(1)

where the probability is taken over all the possible val-
ues assigned to H,, i.e., all functions in Hash,,, as well
as all possible internal coin tosses of the parties running
IT and those of the adversary A, with uniform proba-
bility distribution. The value « indicates the maximum
desired probability of some “bad” event (e.g., for en-
cryption schemes v = 1/2 and for signature schemes
~v = 0). Since the random variable H,, is uniformly
distributed over Hash,, for every n, the definition (1) of
security in the random oracle model is rewritten into
the following form: for all probabilistic polynomial-
time adversaries A and all d € N there exists N € N*
such that, for all n > N,

> heHash, LT [Expt g1, o (n) =1 | Hyy = h]
#Hash,,

1
Pr [ExptAHn IIHn (n) = 1} S Y + 4>
’ n

(2)

<yg
<7+ 3

where #Hash,, denotes the number of functions in Hash,,,
and the probability is now conditioned on that the ran-



dom variable H,, takes a specific function h € Hash,, as
its value.

Let {h,} be an arbitrary sequence of functions such
that h,, € Hash,, for all n. In this paper, we intro-
duce the notion of security of Il relative to a specific
oracle {h,}, which can be formulated as follows: the
scheme II is secure relative to {h,} if, for all proba-
bilistic polynomial-time adversaries A and all d € N*
there exists N € NT such that, for all n > N,

Pr [ExptAH,“HH" (n)=1 } H, = hn] <~v+ %. (3)

The functions {h,} is an instantiation of the random
oracle {H,}. Note that, in the case where {h,} is
polynomial-time computable, the condition (3) implies
that the scheme II is just secure in the standard model.

In our former work [6], we investigated the instanti-
ation of the random oracle by a random real in a scheme
already proved secure in the random oracle model in
this line. We presented equivalent conditions for a
specific oracle {h,} instantiating the random oracle to
keep a cryptgraphic scheme secure, using a concept of
algorithmic randomness, i.e., a variant of Martin-Lof
randomness. Based on this, in particular we showed
that the security proved in the random oracle model is
firmly maintained after instantiating the random oracle
by a random real.

In present paper, we introduce the notion of effec-
tive security, which is a constructive strengthen of nor-
mal (non-constructive) notions of security. In terms of
the definitions (1) and (3) of security, the “effective-
ness” means that the natural number N can be com-
puted from the code of an adversary A and a natural
number d. We consider signature schemes in the ran-
dom oracle model, and show that some specific com-
putable function {h,} can instantiate the random ora-
cle while keeping the effective security originally proved
in the random oracle model. We demonstrate that the
effective security is a natural alternative to the normal
security notions in modern cryptography by reconsid-
ering the security notions required in modern cryptog-
raphy.

The results of this paper are based only on the gen-
eral form of the definitions of security notions for a
signature scheme in modern cryptography, and depend
neither on specific schemes nor on specific security no-
tions.

2 Preliminaries

We start with some notation about numbers and
strings which will be used in this paper. #5S is the
cardinality of S for any set S. N = {0,1,2,3,...} is
the set of natural numbers, and NV is the set of positive
integers. Q is the set of rational numbers.

{0,1}* = {),0,1,00,01, 10, 11,000,001, 010, ... } is
the set of finite binary strings where A denotes the
empty string, and {0,1}* is ordered as indicated. We
identify any string in {0, 1}* with a natural number in
this order. For any z € {0,1}*, |x| is the length of
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x. For any n € N, we denote by {0,1}" and {0,1}="
the sets {z | z € {0,1}* & |2| = n} and {z | =z €
{0,1}* & |z| < n}, respectively. For any n,m € N, we
denote by Func]’ and FuncZ,, the set of all functions
mapping {0,1}" to {0,1}™ and the set of all functions
mapping {0, 1}=" to {0,1}™, respectively. A subset S
of {0,1}* is called prefiz-free if no string in S is a pre-
fix of another string in S. We write “r.e.” instead of
“recursively enumerable.”

{0, 1}°° is the set of infinite binary sequences, where
an infinite binary sequence is infinite to the right but
finite to the left. For any a € {0,1}* and any n € N,
we denote by af,€ {0, 1}* the first n bits of a. For any
S c {0,1}*, the set {o € {0,1}> |In € Nal,€ S} is
denoted by [S]”

Lebesgue outer measure £ on {0,1}°° is a function
mapping any subset of {0,1}°° to a non-negative real.
In this paper, we use the following properties of L.

Proposition 2.1.

(i) L([P]7) = S,ep 2712l for every prefiz-free set
P c{0,1}*.

(i1) L(C) < L(D) for every sets C C D C {0,1}.
(iii) L£(J;Ci) <>, L(C;) for every sequence {C;}ien
of subsets of {0,1}°°. O
A function f: N — {0,1}* is called computable if
there exists a deterministic algorithm which on every
input n € N halts and outputs f(n). A computable
function is also called a total recursive function. A real
a is computable if there exists a computable function
g: N — Qsuch that |a — g(k)| < 27% for all k € N. We
say that o € {0,1}°° is computable if the mapping N 5
n — «af, is a computable function, which is equivalent
to that the real 0.« in base-two notation is computable.

3 Signature Schemes in a General Form

We begin by presenting the general form of signa-
ture scheme which we consider in this paper. These
are the full-domain hash (FDH) signature schemes in
a general form. We will give our results for them.

Let £(n) be a polynomial. An ¢-function is a func-
tion H: N x {0,1}* — {0,1}* such that |H(n,z)| =
£(n) for all n € N and « € {0,1}*. For each ¢-function
H and n € N, we define a function H,: {0,1}* —
{0,1}0) by H, () = H(n,z). An {-function serves as
an instantiation of the random oracle, such as a cryp-
tographic hash function.

Definition 3.1. Let £(n) be a polynomial. A signature
scheme relative to {-functions is a tuple (Gen, Sign, Vrfy)
of three probabilistic polynomial-time algorithms such
that, for every (-function H,

1. The key generation algorithm Gen takes as input
a security parameter 1™ and outputs a pair of keys
(pk, sk). These are called the public key and the
private key, respectively. We assume that n can
be determined from each of pk and sk.

The signing algorithm Sign takes as input a pri-
vate key sk and a message m € {0,1}*. It is



given oracle access to Hy(+), and then outputs a
signature o, denoted as o «— Signi”(')(m).

The deterministic verification algorithm Vrfy takes
as input a public key pk, a massage m, and a sig-
nature o. It is given oracle access to Hy(+), and
then outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write this as
b:= Vrfygc"(')(m, o).

It is required that, for every n € NV, for every (-
function H, for every (pk, sk) output by Gen(1™), and
for every m € {0,1}*, Vrfyfk"(')(m,Signi"(')(m))
1.

O

In this paper we consider the existential unforge-
ability of signature schemes under adaptive chosen-
message attacks as an example. We can show the same
results for other security notions, such as the existen-
tial unforgeability against key only attacks, the existen-
tial unforgeability against known-message attacks, and
the existential unforgeability against generic chosen-
massage attacks. Let II = (Gen,Sign, Vrfy) be a sig-
nature scheme relative to ¢-functions, and consider the
following experiment for a probabilistic polynomial-time
adversary A, a parameter n, and a function G mapping
a superset of {0,1}=9(™ to {0,1}*(™) where ¢(n) is the
maximum value between the running time of A and the
running time of Sign on the parameter n:

The signature experiment Sig-forge 4 1(n, G):

1. Gen(1™) is run to obtain keys (pk, sk).
2. Adversary A is given pk and oracle ac-
cess to Signf(')(~) and G(-). (The first
oracle returns a signature Signf(') (m’)
for any message m' of the adversary’s
choice.) The adversary then outputs
(m,o). Let Q denotes the set of mes-
sages whose signatures were requested
by A during its execution.
The output of the experiment is de-
fined to be 1 if and only if (1) m ¢ Q,
and (2) VrfyG(')(m,a) =1

pk
On the one hand, the existential unforgeability of
signature schemes under adaptive chosen-message at-
tacks relative to a specific /-function is defined as fol-
lows. This form of the definition corresponds to the
condition (3) for the security relative to a specific ora-
cle {h,} considered in the introduction.

Definition 3.2. Let H be an ¢-function. A signature
scheme II = (Gen, Sign, Vrfy) relative to {-functions is

existentially unforgeable under an adaptive chosen-message

attack (or EUF-ACMA secure) relative to H if for
all probabilistic polynomial-time adversaries A and all
d € NT there exists N € NT such that, for alln > N,
Pr[Sig-forge 4 r1(n, Hy) = 1] < 1/nc. O

On the other hand, the existential unforgeability of
signature schemes under adaptive chosen-message at-
tacks in the random oracle model is formulated as fol-
lows. This form of the definition corresponds to the
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condition (2), and is justified based on the considera-
tion in the introduction.

Definition 3.3. A signature scheme II = (Gen, Sign, Vrfy)
relative to £-functions is existentially unforgeable un-
der an adaptive chosen-message attack (or EUF-ACMA
secure) in the random oracle model if for all probabilis-
tic polynomial-time adversaries A and all d € N there
exists N € NT such that, for alln > N,

£(n)

#Func Z

< £(n)
<q(n) GEFuncSq(n)

1

1
Pr[Sig-forge 4 1(n, G) = 1] < —,
’ n

where q(n) is the mazimum value between the running
time of A and the running time of Sign on the param-
eter n. O

4 Main Result

Let H be an ¢-function. We say that H is com-
putable if there exists a deterministic algorithm which
on every input (n,z) halts and outputs H(n,z). On
the other hand, we say that H is polynomial-time com-
putable if there exists a deterministic algorithm which
on every input (1",z) operates and outputs H(n,x)
within time polynomial in n and |z|.

Conjecture 1 below means that, in the case where
a signature scheme II satisfies a certain condition C,
the existential unforgeability of IT proved to be EUF-
ACMA secure in the random oracle model can be firmly
maintained in the standard model after instantiating
the random oracle by some polynomial-time computable
{-function.

Conjecture 1. Let {(n) be a polynomial. Suppose that
a signature scheme II = (Gen, Sign, Vrfy) relative to £-
functions is EUF-ACMA secure in the random oracle
model. If 11 satisfies C, then there exists a polynomial-
time computable (-function (or a polynomial-time com-
putable family of (-functions) relative to which II is
EUF-ACMA secure. O

Note that an appropriate restriction on a signature
scheme IT, i.e., the condition C on II, might be necessary
to prove Conjecture 1, due to the negative results in the
secure instantiation of the random oracle by Canetti, et
al. [2]. At present, however, it would seem very difficult
to prove it with identifying an appropriate nontrivial
condition C.

The second best thing is to investigate whether Con-
jecture 2 below holds true or not, where we consider
the instantiation of the random oracle by simply a com-
putable ¢-function, which is not necessarily polynomial-
time computable.

Conjecture 2. Let {(n) be a polynomial. Suppose that
a signature scheme II = (Gen, Sign, Vrfy) relative to ¢-
functions is EUF-ACMA secure in the random oracle
model. Then there exists a computable -function H
such that 11 is EUF-ACMA secure relative to H. [

In what follows, we show that an “effective” vari-
ant of Conjecture 2 holds true. We introduce the notion



of effective EUF-ACMA security, which is a construc-
tive strengthen of normal (non-constructive) notions
of EUF-ACMA security. In terms of Definitions 3.2
and 3.3 for the normal EUF-ACMA security, the “ef-
fectiveness” means that the number N in the defini-
tions can be computed, given the code of an adver-
sary A and a number d. To begin with a formal def-
inition, we choose a particular recursive enumeration
A1, As, As, ... of all probabilistic polynomial-time ad-
versaries as the standard one for use throughout the
rest of this paper. It is easy to show that such an enu-
meration exists.

On the one hand, the effective EUF-ACMA security
relative to a specific /-function is defined as follows.

Definition 4.1. Let H be an {-function. A signature
scheme TI = (Gen, Sign, Vrfy) relative to {-functions is
effectively existentially unforgeable under an adaptive
chosen-message attack (or effectively EUF-ACMA se-
cure) relative to H if there exists a computable function
f: Nt xNT — N* such that, for alli,d,n € N*, ifn >
f(i,d) then Pr[Sig-forge 4, y(n, Hy,) = 1] < 1/n%. O
Obviously, if a signature scheme II relative to /-
functions is effectively EUF-ACMA secure relative to
H, then IT is simply EUF-ACMA secure relative to H.
On the other hand, the effective EUF-ACMA secu-
rity in the random oracle model is defined as follows.

Definition 4.2. A signature scheme II = (Gen, Sign, Vrfy)

relative to {-functions is effectively existentially un-
forgeable under an adaptive chosen-message attack (or
effectively EUF-ACMA secure) in the random oracle
model if there exists a computable function f: NT x
N* — N* such that, for all i,d,n € N, if n > f(i,d)
then

1
£(n)

#Func Z

£(n)
<q(n) GeFunc_['/

Pr[Sig—forgeAi,H(n, G)=1]<

where q(n) is the mazimum value between the running
time of A; and the running time of Sign on the param-
eter n. O

Obviously, if a signature scheme II relative to ¢-
functions is effectively EUF-ACMA secure in the ran-
dom oracle model, then II is simply effectively EUF-
ACMA secure in the random oracle model.

The effective variant of Conjecture 2 is then pre-
sented as follows.

Theorem 4.3 (main result). Let £(n) be a polynomial.
Suppose that a signature scheme II = (Gen, Sign, Vrfy)
relative to (-functions is effectively EUF-ACMA secure
in the random oracle model. Then there exists a com-
putable £-function H such that 11 is effectively EUF-
ACMA secure relative to H. O

In order to prove Theorem 4.3, we need Lemmas 4.4,
4.5, and 4.6 below. The first two can be easily proved.
The last one is Exercise 1.9.21 of Nies’s textbook [5]
of algorithmic randomness. See [5] for the proof of
Lemma 4.6.

1
nd’
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Lemma 4.4. Let fi1,...,fn be reals. Suppose that
%Zf\f:l fi < e. Then, for every a > 0, the number
of i for which ae < f; is less than N/a. O
Lemma 4.5. Let d > 2. Then Y o, 1/k% < 2/n for
every n € NT, O
Lemma 4.6. Let S be an r.e. subset of {0,1}*. Sup-
pose that L ([S]™) < 1 and L ([S]7) is a computable
real. Then there exists o € {0,1}°° such that « is com-
putable and o ¢ [S]~. O

Proof of Theorem 4.3. Suppose that a signature scheme
IT = (Gen, Sign, Vrfy) relative to ¢-functions is effec-
tively EUF-ACMA secure in the random oracle model.
Then there exists a computable function f: NT x Nt —
NT such that, for all i,d,n € N*, if n > f(i,d) then

1

#Funcé(n) Z

<qi(n £(n)
<qi(n) GeFuncgqi(”)

. 1
Pr[Sig-forge 4, 1(n,G) = 1] < —

where g;(n) is the maximum value between the running
time of A; and the running time of Sign on the param-
eter n. Note that the value ¢;(n) can be computed,
given ¢ and n. It follows from Lemma 4.4 that, for all
i,d,n € NT_if n > f(i,2d) then

L(n . 1
#{G € Funcg(qi)(n) Pr[Sig-forge 4, 1;(n, G) = 1] > nd}
£(n)
#Funcly),)

<
nd

(4)

In order to apply the method of algorithmic ran-
domness, i.e., Lemma 4.6, we identify an ¢-function
with an infinite binary sequence in the following man-
ner: We first choose a particular bijective total recur-
sive function b: N — NxN with b(k) = (b1 (k), b2(k)) as
the standard one for use throughout the rest of this pa-
per. We assume for convenience that, for every k,1 € N,
if b1(k) = b1(I) and k < [ then ba(k) < ba(l). For ex-
ample, the inverse function of a function ¢: Nx N — N
with e¢(m,n) = (m+n)(m+n-+1)/2+n can serve as such
a function b. Then each ¢-function H: N x {0,1}* —
{0,1}* is identified with the infinite binary sequence

(5)

Recall here that we identify {0, 1}* with N, as explained
in Section 2, and therefore each bo(k) is regarded as a
finite binary string in (5). In what follows, we work
with this intuition of the identification.

For each i,d,n € N* we define a subset [C; a4,
of {0,1}* as the set of all ¢-functions H such that
Pr[Sig-forge 4, r(n, H,) = 1] > 1/n. Namely, we de-
fine a subset C; 4., of {0,1}* as the set of all finite bi-
nary strings of the form xoG(\)z1G(0)z2G(1)x3 -z,
G(19() for which the following properties (i), (ii), and
(iii) hold for L, g, x1,x2,3,...,21, and G:

(1) L+1=+#{0,1}5%0 (je. L =2+ _9)

]<



(ii) For each j =0,...,L, xj €{0,1}* and
[20G(A)21G(0)22G (Vs - - 5 = 3 g oy, £(b1(R)
where k; is a natural number such that b(k;) =
(n,7)-

(iif) G: {0,1}=%() — {0, 1}(™) and
Pr[Sig-forge 4, i(n, G) = 1] > 1/n.

Since #Func_ (n) ) = 2m#0.1}=% ip follows from
(i) of Proposmon 2.1 and (4) that, for each i,d,n € NT,
if n > f(i,2d) then

L ([Ci,d,n]-<) = Z 278!
SGCi,d,n
) (6)
< ##Func_ () o—(m)#{0,1}=4 () _ 1
nd nd’

We choose a particular computable bijection ¢: NT —

{(i,d) | i € Nt & d > 2}, and define (¢1(m), p2(m)) =
©(m). We then define a computable function g: NT —

N* by g(m) = {f(¢1(m), 2p2(m)) + 1)™*1. For cach
m € NT, we define a subset Cy, of {0,1}* by

U 0801

n=g(m)

(7)

)sp2(m),n

It follows from (iii) of Proposition 2.1, (6), and Lemma 4.5

that, for each m € NT,

L ([Cm}<> < Z L ([Cspl(m)vtp2(m)1"]-<)
n=g(m)
8
S R Y
ne2(m) = g(m) ~ 2m’
n=g(m)
We then define C' by
m=1

Therefore, using (iii) of Proposition 2.1,

<Y L(Cnm Zimzl. (10)

m=1

Next we show that C is an r.e. subset of {0,1}*. It
is easy to see that, given 4, d, and n, one can decide the
finite subset C; 4., of {0,1}*, since the dyadic rational
Pr[Sig-forge 4, 11(n, G) = 1] is computable, given i, n,
and G: {0,1}=%() — {0,1}*(™), Thus, since ¢ and g
are computable functions, it follows from (7) and (9)
that C is an r.e. subset of {0,1}*.

We then show that £ ([C]7) is a computable real.
For each k € N, we define a finite subset Dy, of C' by

k g(m)2F—1

n-U U

m=1 n=g(m)

C

Wl(m)ﬂOZ(m):n'

Given k € N, one can decides the finite set Dy, since ¢
and g are computable functions and moreover one can
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decide the finite set C 4., given ¢, d, and n. There-
fore, given k € N, one can calculate the dyadic rational
L ([Dy]™) based on (i) of Proposition 2.1. On the other
hand, note that

C\Dk -

U U Clor(m) oz (m).n

m=1n=g(m)2~

U Crn.

m=k+1

Thus, using (ii) and (iii) of Proposition 2.1, (6), Lemma 4.5,
and (8) we see that, for each k € N,

L([C\Di]")
k 0
<> Z ( o1 (m)p2(m),n ) Z L(
m=1n= (m) m=k+1
< mZZI g ; Tn mZ:: 2m+k 2k—1'
Therefore, since [C]~ = [Dyy1] U[C\ Dys1]™, using

(ii) and (iii) of Proposition 2.1 we have

£ ([c1)

for each k € N. Hence, £ ([Cﬁ) is a computable real.
Now, it follows from Lemma 4.6 that there exists

H € {0,1}* such that H is computable and H ¢ [C]~
Since H is computable as an infinite binary sequence,
it is easy to see that H is also computable as an /-
function. On the other hand, let i,d,n € Nt with
n > g(p~1(i,d+1)). We then define m = o= 1(i,d+1),
i.e., o(m) = (i,d+1). Since H ¢ [C]™ and n > g(m), it
follows from (9) and (7) that H ¢ [Cy, (m).ps(m), ]< =
[Ci.d11.n)". Therefore, based on the identification (5)
of an /-function with an infinite binary sequence, we see
that the function H,: {0,1}* — {0,1}*("™) satisfies that
Pr[Sig-forge 4, 11(n, H,) = 1] < 1/n**! < 1/n. Thus,
since the mapping N* x Nt 3 (i,d) — g(¢"(i,d + 1))
is a computable function, it follows from Definition 4.1
that II is effectively EUF-ACMA secure relative to H.
O

— L ([Dria])| < L([C\ Dpya] ) <27F

5 Discussion

In this section, we show that the effective security
introduced in the previous section is a natural alterna-
tive to the normal security notions in modern cryptog-
raphy.

In Definitions 3.2 and 3.3 for the normal EUF-ACMA
security, the number N is only required to exist, de-
pending on an adversary A and a number d, that is,
the success probability of the attack by an adversary
A on a security parameter n is required to be less than
1/n? for all sufficiently large n, where the lower bound
of such n is not required to be computable from A and
d. On the other hand, in Definitions 4.1 and 4.2 for
the effective EUF-ACMA security, it is required that
the lower bound N of such n can be computed from
the code of A and d.



In modern cryptography based on computational
security, it is important to choose the security parame-
ter n of a cryptographic scheme as small as possible to
the extent that the security requirements are satisfied,
in order to make the efficiency of the scheme as high
as possible. For that purpose, it is desirable to be able
to calculate a concrete value of N, given the code of A
and d, since N gives a lower bound of the security pa-
rameter for which the security requirements specified
by A and d are satisfied. This results in the notion of
effective security.

Does the replacement of the normal security notion
by the corresponding effective security notion bring
difficulties to modern cryptography in general 7 We
do not think so. It would seem plausible that all the
normal security notions can be replaced by the corre-
sponding effective security notions in modern cryptog-
raphy with little cost. As an example, let us consider
the EUF-ACMA security of the RSA-FDH signature
scheme under the RSA assumption and its effective
counterpart. Let Succ”(n) be the success probabil-
ity of an algorithm A in solving the RSA problem on
a security parameter n. On the one hand, the (nor-
mal) RSA assumption is defined as the condition that,
for all probabilistic polynomial-time algorithms A and
all d € Nt there exists N € NT such that, for all
n> N, Succ”(n) < 1/n?. On the other hand, the ef-
fective RSA assumption is defined as the condition that
there exists a computable function f: Nt x NT — Nt
such that, for all i,d,n € N* if n > f(i,d) then
Succi‘iA(n) < 1/n?, where A; is the ith algorithm in
a particular recursive enumeration of all probabilistic
polynomial-time algorithms.

Now, recall the following theorem.

Theorem 5.1 (Bellare and Rogaway [1]). RSA-FDH
is EUF-ACMA secure in the random oracle model un-
der the RSA assumption. O

By analyzing the proof of Theorem 5.1 given in [1],
we can see that the following effective version of The-
orem 5.1 holds. We can do this task very easily, com-
pared with the non-triviality of the original proof itself.

Theorem 5.2. RSA-FDH is effectively FUF-ACMA
secure in the random oracle model under the effective
RSA assumption. O

Note that the effective RSA assumption seems more
difficult to prove than the RSA assumption. How-
ever, in modern cryptography based on computational
security, we must make a computational assumption
somehow to guarantee the security of a cryptographic
scheme. Since making any computational assumption
does not cost at all in the development of theory of
cryptography, making the effective RSA assumption in-
stead of the RSA assumption would not seem to bring
any trouble to modern cryptography. In this manner,
we would expect that all the normal security notions
can be replaced by the corresponding effective security
notions in modern cryptography with little cost. Thus,
it would seem plausible that we can easily reconstruct
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the theory of cryptography based on the effective secu-
rity notions instead of the normal security notions.

6 Furure Direction

In the previous section, we consider the validity of
the effective security notions in modern cryptography.
However, it would seem more natural to require that
the functions f: Nt x NT — N¥ in Definitions 4.1
and 4.2 are polynomial-time computable rather than
simply computable. We call this type of effective se-
curity polynomial-time effective security. Conjecture 3
below is a polynomial-time effective version of Conjec-
ture 1, and states that the security in the random oracle
model implies one in the standard model. In the future,
it would be challenging to prove Conjecture 3 (or its ap-
propriate modification) with identifying an appropriate
computational assumption COMP and an appropriate
nontrivial condition C on a signature scheme II.
Conjecture 3. Let ¢(n) be a polynomial. Suppose
that a signature scheme II relative to (-functions is
polynomial-time effectively EUF-ACMA secure in the
random oracle model. Under the assumption COMP, if
IT satisfies the condition C, then there exists a polynomial-
time computable ¢-function (or a polynomial-time com-
putable family of ¢-functions) relative to which 11 is
polynomial-time effectively EUF-ACMA secure. O

‘We conclude this paper with the mention that our
result is valid only if the security in the random oracle
model is confirmed already. This may imply that the
random oracle model is not necessarily an imaginary
framework to discuss the security of a cryptographic
scheme, but may have substantial implications for the
security in the standard model.
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