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Abstract— The notion of probability plays an important
role in almost all areas of science. In modern mathemat-
ics, however, probability theory means nothing other than
measure theory, and an operational characterization of the
notion of probability is not established yet. In this paper,
based on the toolkit of algorithmic randomness we present
an operational characterization of the notion of probabil-
ity in the case where the sample space of the underlying
probability space is finite.
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1 Introduction
The notion of probability plays an important role

in almost all areas of science. In modern mathematics,
however, probability theory means nothing other than
measure theory, and an operational characterization of
the notion of probability is not established yet.

In the past century, however, there was a com-
prehensive attempt to provide such a characterization.
Namely, von Mises developed a mathematical theory
of repetitive events which is aimed at reformulating
the theory of probability and statistics based on an
operational characterization of the notion of probabil-
ity [14, 15]. In a series of comprehensive works which
began in 1919, von Mises developed this theory and,
in particular, introduced the notion of collective as a
mathematical idealization of a long sequence of out-
comes of experiments or observations repeated under a
set of invariable conditions, such as the repeated toss-
ing of a coin or of a pair of dice.

The collective plays a role as an operational char-
acterization of the notion of probability, and is an in-
finite sequence of sample points in the sample space
of a probability space. As the randomness property of
the collective, von Mises assumes that all “reasonable”
infinite subsequences of a collective satisfy the law of
large numbers with the identical limit value, where the
subsequences are selected using “acceptable selection
rules.” Wald [16, 17] later showed that for any count-
able collection of selection rules, there are sequences
that are collectives in the sense of von Mises, but at
the time it was unclear exactly what types of selection
rules should be acceptable. There seemed to von Mises
to be no canonical choice.

Later, with the development of computability the-
ory and the introduction of generally accepted precise
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mathematical definitions of the notions of algorithm
and computable function, Church [7] made the first
explicit connection between computability theory and
randomness by suggesting that a selection rule be con-
sidered acceptable if and only if it is computable. In
1939, however, Ville [13] revealed the defect of the no-
tion of collective. Namely, he showed that for any
countable collection of selection rules, there is a se-
quence that is random in the sense of von Mises but has
properties that make it clearly nonrandom. (For the
development of the theory of collectives from the point
of view of the definition of randomness, see Downey
and Hirschfeldt [8].)

In 1966, Martin-Löf [9] introduced the definition of
random sequences, which is called Martin-Löf random-
ness nowadays, and plays a central role in the recent
development of algorithmic randomness. At the same
time, he introduced the notion of Martin-Löf random-
ness with respect to Bernoulli measure [9]. He then
pointed out that this notion overcomes the defect of
collective, and this can be regarded precisely as the col-
lective which von Mises wanted to define. However, he
did not develop probability theory based on Martin-Löf
random sequence with respect to Bernoulli measure.

Algorithmic randomness is a field of mathematics
which studies the definitions of random sequences and
their property [10, 8]. However, the research on al-
gorithmic randomness would seem only interested in
the notions of randomness and their property, and not
seem to have tried to develop probability theory based
Martin-Löf randomness with respect to Bernoulli mea-
sure in an operational manner so far.

The subject of this paper is to make such an at-
tempt. Namely, in this paper we present an operational
characterization of the notion of probability based on
Martin-Löf randomness with respect to Bernoulli mea-
sure. As the first step of the research of this line, we
only consider the case of finite probability space, i.e.,
the case where the sample space of the underlying prob-
ability space is finite, for simplicity. The investigation
of the case of general probability spaces is left to the
future study. We emphasize that the Bernoulli mea-
sure which we consider in this paper is not required to
be computable at all, while the measures considered in
algoritmic randomness are usually computable. Thus,
the results in this paper hold for any finite probaility
space.

Due to the 6-page limit, we omit some proofs. A full
paper which describes all the proofs and other related
results is in preparation.
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2 Preliminaries
2.1 Basic Notation and Definitions

We start with some notation about numbers and
strings which will be used in this paper. #S is the
cardinality of S for any set S. N = {0, 1, 2, 3, . . . } is
the set of natural numbers, and N+ is the set of positive
integers. Q is the set of rationals, and R is the set of
reals.

An alphabet is a nonempty finite set. We suppose
that any alphabet which we consider in this paper has
at least two elements. Let Ω be an alphabet. A finite
string over Ω is a finite sequence of elements from the
alphabet Ω. We denote by Ω∗ the set of all finite strings
over Ω, which contains the empty string denoted by λ.
We denote by Ω+ the set Ω−{λ}. For any σ ∈ Ω∗, |σ| is
the length of σ. Therefore |λ| = 0. A subset S of Ω∗ is
called prefix-free if no string in S is a prefix of another
string in S. We write “r.e.” instead of “recursively
enumerable.”

An infinite sequence over Ω is an infinite sequence
of elements from the alphabet Ω, where the sequence
is infinite to the right but finite to the left. We denote
by Ω∞ is the set of all infinite sequences over Ω.

Let α ∈ Ω∞. For any n ∈ N, we denote by α�n∈ Ω∗

the first n elements in the infinite sequence α and by
α(n) the nth element in α. Thus, for example, α�4=
α(1)α(2)α(3)α(4). For any S ⊂ Ω∗, the set

{α ∈ Ω∞ | ∃n ∈ N α�n∈ S}

is denoted by [S]
≺

. Note that (i) [S]
≺ ⊂ [T ]

≺
for every

S ⊂ T ⊂ Ω∗, and (ii) for every set S ⊂ Ω∗ there exists a
prefix-free set P ⊂ Ω∗ such that [S]

≺
= [P ]

≺
. For any

σ ∈ Ω∗, we denote by [σ]
≺

the set [{σ}]≺, i.e., the set
of all infinite sequences over Ω extending σ. Therefore
[λ]
≺

= Ω∞.
We briefly review measure theory. For the detail,

see Billingsley [4]. A subsetR of Ω∞ is open ifR = [S]
≺

for some S ⊂ Ω∗. In this paper we consider the σ-field
F generated by all open sets on Ω∞, which is defined
as the intersection of all the σ-fields containing all open
sets on Ω∞. A probability measure representation over
Ω is a function r : Ω∗ → [0, 1] such that (i) r(λ) = 1 and
(ii) r(σ) =

∑
a∈Ω r(σa) for every σ ∈ Ω∗. A probability

measure representation r induces the measure µr on the
σ-field F . In this paper, we use the following properties
of the measure µr.

Proposition 1 (Properties of measure on Ω∞).

(i) µr
(
[P ]
≺)

=
∑
σ∈P r(σ) for every prefix-free set

P ⊂ Ω∗. Therefore µr (∅) = µr
(
[∅]≺

)
= 0 and

µr (Ω∞) = µr
(
[{λ}]≺

)
= 1.

(ii) µr (C) ≤ µr (D) for every C,D in the σ-field F
with C ⊂ D.

(iii) µr (
⋃
i Ci) =

∑
i µr (Ci) for every sequence {Ci}i∈N

in the σ-field F .

A function f : N → Ω∗ or f : N → Q is called
computable if there exists a deterministic Turing ma-
chine which on every input n ∈ N halts and outputs

f(n). A computable function is also called a total
recursive function. A real a is called computable if
there exists a computable function g : N→ Q such that
|a− g(k)| < 2−k for all k ∈ N. We say that α ∈ Ω∞

is computable if the mapping N 3 n 7→ α�n is a com-
putable function, which is equivalent to that the real
0.α in base-#Ω notation is computable.

2.2 Algorithmic Randomness

In the following we concisely review some definitions
and results of algorithmic randomness [5, 6, 10, 8].

We denote by L Lebesgue measure on {0, 1}∞. Namely,
L = µr where the probability measure representation r
is defined by the condition that r(σ) = 2−|σ| for every
σ ∈ {0, 1}∗. The idea in algorithmic randomness is to
think of an infinite binary sequence as random if it is
in no effective null set. An effective null set is a subset
S of {0, 1}∞ such that L (S) = 0 and S has some type
of effective property. To specify an algorithmic ran-
domness notion, one has to specify a type of effective
null set, which is usually done by introducing a test
concept. Failing the test is the same as being in the
null set. In this manner, various randomness notions,
such as 2-randomness, weak 2-randomness, Demuth
randomness, Martin-Löf randomness, Schnorr random-
ness, Kurtz randomness, have been introduced so far,
and a hierarchy of algorithmic randomness notions has
been developed (see [10, 8] for the detail).

Among all randomness notions, Martin-Löf random-
ness is a central one. This is because in many re-
spects, Martin-Löf randomness is well-behaved, in that
the many properties of Martin-Löf random infinite se-
quences do match our intuition of what random infi-
nite sequence should look like. Moreover, the concept
of Martin-Löf randomness is robust in the sense that it
admits various equivalent definitions that are all nat-
ural and intuitively meaningful, as we will see in The-
orem 3. Martin-Löf randomness is defined as follows
based on the notion of Martin-Löf test.

Definition 2 (Martin-Löf randomness, Martin-Löf [9]).
A subset C of N+×{0, 1}∗ is called a Martin-Löf test if
C is an r.e. set and for every n ∈ N+, L

(
[Cn]

≺) ≤ 2−n,

where Cn =
{
σ
∣∣ (n, σ) ∈ C

}
.

For any α ∈ {0, 1}∞, we say that α is Martin-Löf
random if for every Martin-Löf test C there exists n ∈
N+ such that α /∈ [Cn]

≺
.

Let C be a Martin-Löf test. Then, for each k ∈ N+,
using (ii) of Proposition 1 we see that L

(⋂∞
n=1 [Cn]

≺) ≤
L
(
[Ck]
≺) ≤ 2−k. On letting k →∞, we have

L

( ∞⋂
n=1

[Cn]
≺

)
= 0.

Thus, the set
⋂∞
n=1 [Cn]

≺
forms an effective null set

in the notion of Martin-Löf randomness. Definition 2
says that an infinite binary sequence α is Martin-Löf
random if α is not in the effective null set

⋂∞
n=1 [Cn]

≺

for any Martin-Löf test C.
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The robustness of Martin-Löf randomness is mainly
due to the fact that it admits characterizations based
on the notion of program-size complexity, as shown
in Theorem 3. The program-size complexity (or Kol-
mogorov complexity) K(σ) of a finite binary string σ
is defined as the length of the shortest binary input
for a universal decoding algorithm U , called an opti-
mal prefix-free machine, to output σ (see Chaitin [5]
for the detail). By the definition, K(σ) can be thought
of as the randomness contained in the individual finite
binary string σ.

Theorem 3 (Schnorr [12] and Chaitin [5]). For every
α ∈ {0, 1}∞, the following conditions are equivalent:

(i) α is Martin-Löf random.
(ii) There exists c ∈ N such that, for all n ∈ N+,

n− c ≤ K(α�n).

The condition (ii) means that the infinite binary
sequence α is incompressible.

3 Martin-Löf Randomness with respect

to Bernoulli Measure
In order to provide an operational characterization

of the notion of probability we use a generalization of
Martin-Löf randomness over Bernoulli measure.

Let Ω be an alphabet through out the rest of this
paper. It plays a role of the set of all possible out-
comes of experiments or observations. The probability
simplex on Ω, denoted by P(Ω), is the set of all func-
tions P : Ω → R such that P (a) ≥ 0 for every a ∈ Ω
and

∑
a∈Ω P (a) = 1. Bernoulli measure is given as

follows.
Let P ∈ P(Ω). Consider a function r : Ω∗ → [0, 1]

such that r(a1 . . . an) =
∏n
i=1 P (ai) for every n ∈ N

and a1, . . . , an ∈ Ω. The function r is a probaility mea-
sure representation. The measure µr induced by r is
Bernoulli measure on Ω∞, denoted λP . Then Bernoulli
measure λP on Ω∞ has the following property: For ev-
ery σ ∈ Ω∗,

λP
(
[σ]
≺)

=
∏
a∈Ω

P (a)Na(σ), (1)

where Na(σ) is the number of the ocurrences of the
element a in the finite string σ.1

Martin-Löf randomness with respect to Bernoulli
measure is defined as follows. This notion was, in
essence, introduded by Martin-Löf [9], as well as the
notion of Martin-Löf randomness, which we describe
in Definition 2.

Definition 4 (Martin-Löf randomness with respect to
Bernoulli measure, Martin-Löf [9]). Let P ∈ P(Ω). A
subset C of N+ × Ω∗ is called a Martin-Löf P -test if C
is an r.e. set such that, for every n ∈ N+, λP

(
[Cn]

≺) ≤
2−n, where Cn =

{
σ
∣∣ (n, σ) ∈ C

}
.

For any α ∈ Ω∞, we say that α is Martin-Löf P -
random if for every Martin-Löf P -test C there exists
n ∈ N+ such that α /∈ [Cn]

≺
.

1 00 is defined as 1 in the equation (1).

Note that in Definition 4 we do not require that
P (a) > 0 for all a ∈ Ω. Therefore, P (a0) may be 0 for
some a0 ∈ Ω. In the case where Ω = {0, 1} and P ∈
P(Ω) satisfies that P (0) = P (1) = 1/2, the Martin-Löf
P -randomness results in the Martin-Löf randomness.

Since there are only countably infinitely many algo-
rithms and every Martin-Löf P -test induces an effective
null set, it is easy to show the following theorem.

Theorem 5. λP (MLP ) = 1 for every P ∈ P(Ω), where
MLP is the set of all Martin-Löf P -random sequences.

4 Substance of the Notion of Probabail-

ity: Ensemble
In this section, we give an operational characteriza-

tion of the notion of probability for a finite probability
space. We will identify the substance of the notion
of probability for a finite probability space. For that
purpose, we first review the notion of finite probability
space, based on the notion of probability simplex. Let
P ∈ P(Ω). For each A ⊂ Ω, we define P (A) by

P (A) :=
∑
a∈A

P (a).

Then, P can be regarded as a finite probability space
(Ω,F , P ), where F is the set of all subset of Ω. The
set Ω is the sample space, and elements in Ω are called
elementary events. A subset of Ω is called an event,
and P (A) is called the probability of A for every event
A. In what follows, we regard each element in P(Ω) as
a finite probability space in this manner.

We propose to regard the substance of the notion
of probability as a Martin-Löf P -random sequence of
elementary events. Thus, we introduce the notion of
ensemble for a finite probability space, as in Defini-
tion 6, and regard it as the substance of the notion of
probability.

Definition 6 (Ensembles). Let P ∈ P(Ω). A Martin-
Löf P -random sequence in Ω∞ is called an ensemble
for the finite probability space P .

Frist, we check that the law of large numbers holds
for every ensemble for a finite probability space. Since
P is not necessarily computable reals, we have to check
whether the law of large numbers holds for any Martin-
Löf P -random sequence. However, we can certainly
prove it using the Chernoff bound.

Theorem 7 (The law of large numbers). Let P ∈
P(Ω). For every α ∈ Ω∞, if α is an ensemble for P
then, for every a ∈ Ω,

lim
n→∞

Na(α�n)

n
= P (a).

The following is immediate from Theorem 7.

Corollary 8. Let P,Q ∈ P(Ω). If there exists α ∈ Ω∞

which is both an ensemble for P and an ensemble for
Q, then P = Q.
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Note that the notion of probability is more than
the law of large numbers. To see this, consider the
case where P (a) = 0 for a particular a ∈ Ω. Then we
expect that the “elementary event” a never happens
in experiments or obserbations. Thus, the following
result shows that the notion of ensemble coincides with
our intuition about the notion of probability in this
respect. The result was, in essence, pointed out by
Martin-Löf [9].

Theorem 9. Let P ∈ P(Ω), and let a ∈ Ω. Suppose
that α is an ensemble for the finite probability space P
and P (a) = 0. Then α does not contain a.

5 Robustness of the Notion of Ensem-

ble
In this section we show a certain robustness of the

notion of ensemble. Consider an ensemble α for a finite
probability space P ∈ P(Ω):

α = a1, a2, a3, a4, a5, a6, . . . . . . . . . .

Suppose that this sequence is the outcomes of certain
observations repeated infinitely. Consider another ob-
server who wants to adopt the following sequence β as
the outcomes of the observations:

β = a2, a3, a5, a7, a11, a13, . . . . . . . . . ,

where this observer only considers the nth elements in
the original sequence α such that n is a prime number.
If the notion of ensemble is the substance of the notion
of probability, then β has to be an ensemble for P ,
as well. We can confirm this requirement in a more
general setting by assuming that every observer can
select elements from the original sequence α only in an
effective manner.

Theorem 10 (Robustness of ensemble I). Let P ∈
P(Ω), and let α be an ensemble for P . Then, for ev-
ery total recursive function f : N+ → N+, if f is an
injection, then the infinite sequence

αf := α(f(1))α(f(2))α(f(3))α(f(4)) . . . . . . . . .

is an ensemble for P .

Thus, the notion of ensemble is closed under a com-
putable shuffling. We can also show that the notion of
ensemble is closed under the selection by computable
selection rules as in the theory of collectives [14, 15, 16,
17, 7].

Theorem 11 (Robustness of ensemble II). Let P ∈
P(Ω), and let α be an ensemble for P . Let g : Ω∗ →
{YES,NO} be a total recursive function. Suppose that
g(α�k) is defined for every k ∈ N and {k ∈ N | g(α�k
) = YES} is an infinite set. Then the infinite sequence

α(f(1))α(f(2))α(f(3))α(f(4)) . . . . . . . . .

is an ensemble for P , where the function f : N+ → N+

is defined by

f(n) = min{m ∈ N+ | #{k ≤ m | g(α�k) = YES} = n}+1.

6 Conditional Probability and Indepen-

dence
In this section, we operationally characterize the

notions of conditional probability and independence in
a finite probability space in terms of ensembles.

Let P ∈ P(Ω), and let A ⊂ Ω be an event in the
finite probability space P . For each ensemble α for
P , CA (α) is defined as the infinite binary sequence
such that, for every i, its ith element CA (α) (i) is 1 if
α(i) ∈ A and 0 otherwise. The pair (P,A) induces a
finite probability space C (P,A) ∈ P({0, 1}) such that
C (P,A) (1) = P (A) and C (P,A) (0) = 1− P (A). Note
that the notions of CA (α) and C (P,A) in our theory
together correspond to the notion of mixing in the the-
ory of collectives by von Mises [15]. We can then show
the following theorem.

Theorem 12. Let P ∈ P(Ω), and let A ⊂ Ω. Suppose
that α is an ensemble for the finite probability space P .
Then CA (α) is an ensemble for the finite probability
space C (P,A).

In order to prove Theorem 12, it is convenient to
prove the following theorem first, from which Theo-
rem 12 follows.

Theorem 13. Let P ∈ P(Ω). Let α be an ensemble for
P , and let a and b be distinct elements in Ω. Suppose
that β is the infinite sequence in (Ω − {b})∞ obtained
by replacing all occurences of b by a in α. Then β is an
ensemble for Q, where Q ∈ P(Ω−{b}) such that Q(d) =
P (a) + P (b) if d = a and Q(d) = P (d) otherwise.

Proof. We show the contraposition. Suppose that β
is not a Martin-Löf Q-random sequence. Then there
exists a Martin-Löf Q-test S such that β ∈ [Sn]

≺
for

every n. For each σ ∈ (Ω − {b})∗, let f(σ) be the
set of all τ ∈ Ω∗ such that τ is obtained by replacing
some ccurrences of a in σ, if exists, by b. Note that
if σ has exactly n ccurences of a then #f(σ) = 2n.
We then define T to be {(n, f(σ)) | σ ∈ Sn}. Since
Q(a) = P (a) +Q(b), it is easy to see that λQ

(
[σ]
≺)

=

λP
(
[f(σ)]

≺)
. Therefore

λP
(
[Tn]

≺)
= λQ

(
[Sn]

≺) ≤ 2−n.

Since T is r.e., we see that T is Martin-Löf P -test. On
the other hand, α ∈ [Tn]

≺
for every n, and therefore α

is Martin-Löf P -random. This completes the proof.

We show that the notion of conditional probability
in a finite probability space can be represented by an
ensemble in a natural manner.

Let P ∈ P(Ω), and let B ⊂ Ω be an event in the
finite probability space P . Suppose that P (B) > 0.
Then, for each event A ⊂ Ω, the conditional probability
of A given B, denoted by P (A|B), is defined as P (A ∩
B)/P (B). This notion defines a finite probability space
PB ∈ P(B) such that PB(a) = P ({a}|B) for every
a ∈ B.

When an infinite sequence α ∈ Ω∞ contains in-
finitely many elements from B, FilteredB (α) is defined
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as the infinite sequence in B∞ obtained from α by el-
liminating all elements in Ω−B ocurring in α. If α is an
ensemble for the finite probability space P and P (B) >
0, then α contains infinitely many elements from B
due to Theorem 7. Therefore, FilteredB (α) is defined
in this case. Note that the notion of FilteredB (α) in
our theory corresponds to the notion of partition in the
theory of collectives by von Mises [15].

Theorem 14. Let P ∈ P(Ω), and let B ⊂ Ω be an
event in the finite probability space P with P (B) >
0. For every ensemble α for P , FilteredB (α) is an
ensemble for the finite probability space PB.

Proof. In the case ofB = Ω, PB = P and FilteredB (α) =
α. Therefore the result is obvious. Thus, in what fol-
lows, we assume B is a proper subset of Ω.

First, we choose any one a ∈ Ω−B and define Q ∈
P(B∪{a}) by the condition that Q(d) =

∑
b∈Ω−B P (b)

if d = a and Q(d) = P (d) otherwise. Let β be the
infinite sequence in (B ∪ {a})∞ obtained by replacing
all occurences of elements of Ω−B in α by a. It follows
from Theorem 13 that β is Martin-Löf Q-random. In
addition, note that

1−Q(a) = P (B), (2)

and therefore Q(a) < 1. Thus, it is sufficient to show
that if FilteredB (α) is not Martin-Löf PB-random then
β is not Martin-Löf Q-random.

Assume that FilteredB (α) is not Martin-Löf PB-
random. Then there exists a Martin-Löf PB-test S
such that FilteredB (α) ∈ [Sn]

≺
for every n. For each

σ ∈ Ω+, let F (σ) be the set of all finite strings in
B ∪ {a} of the form ak1σ1a

k2σ2 . . . a
kLσkL for some

k1, k2, . . . , kL ∈ N, where σ = σ1σ2 . . . σL with σi ∈ B.
Then, by (2), we see that

λQ
(
[F (σ)]

≺)
=

∞∑
k1,k2,...,kL=0

λQ

([
ak1σ1a

k2σ2 . . . a
kLσkL

]≺)
=

∞∑
k1,k2,...,kL=0

λQ
(
[σ]
≺)
Q(a)k1Q(a)k2 . . . Q(a)kL

= λQ
(
[σ]
≺)( ∞∑

k=0

Q(a)k

)L
= λQ

(
[σ]
≺) 1

(1−Q(a))L

= λQ
(
[σ]
≺) 1

P (B)L
= λPB

(
[σ]
≺)
.

We then define T to be {(n, F (σ)) | σ ∈ Sn}. It follows
that λQ

(
[Tn]

≺)
= λPB

(
[Sn]

≺) ≤ 2−n. Thus, since T is
r.e., we see that T is Martin-Löf PB-test. On the other
hand, β ∈ [Tn]

≺
for every n, and therefore β is not

Martin-Löf P -random. This completes the proof.

Let P ∈ P(Ω). For any events A,B ⊂ Ω in the
finite probability space P , we say that A and B are
independent if P (A ∩ B) = P (A)P (B). In the case

of P (B) > 0, A and B are independent if and only if
P (A|B) = P (A).

We give the characterization of the notion of the
independency between two events by the notion of en-
semble. Let α, β ∈ Ω∞. We say that α and β are
equivalent if there exists P ∈ P(Ω) such that α and
β are both an ensemble for P . The following theorem
gives an operational characterization of the notion of
the independency between two events by the notion of
ensemble.

Theorem 15. Let P ∈ P(Ω), and let A,B ⊂ Ω be
events in the finite probability space P . Suppose that
P (B) > 0. Then the following conditions are equivalent
to one another.

(i) The events A and B are independent.

(ii) For every ensemble α for the finite probability
space P , CA (α) is equivalent to CA∩B (FilteredB (α)).

(iii) There exists an ensemble α for the finite proba-
baility space P such that CA (α) is equivalent to
CA∩B (FilteredB (α)).

Proof. Suppose that α is an arbitrary ensemble for the
finite probability space P . Then, on the one hand,
it follows from Theorem 12 that CA (α) is Martin-Löf
C (P,A)-random. On the other hand, it follow from
P (B) > 0 and Theorem 14 that FilteredB (α) is an
ensemble for the finite probability space PB . Therefore,
by Theorem 12, we see that CA∩B (FilteredB (α)) is
Martin-Löf C (PB , A)-random.

Assume that the condition (i) holds. Then PB(A) =
P (A). Therefore, for an arbitrary ensemble α for the fi-
nite probability space P , CA (α) and CA∩B (FilteredB (α))
are equivalent. Thus, we have the implication (i) ⇒
(ii).

Since there exists an ensemble α for the finite prob-
abaility space P by Theorem 5, the implication (ii) ⇒
(iii) is obvious.

Finally, the implication (iii) ⇒ (i) is shown as fol-
lows. Assume that the condition (iii) holds. Then
CA (α) and CA∩B (FilteredB (α)) are Martin-LöfQ-random
for some ensemble α for the finite probabaility space P
and some Q ∈ P({0, 1}). Thus, CA (α) is Martin-Löf
C (P,A)-random, and CA∩B (FilteredB (α)) is Martin-
Löf C (PB , A)-random. Using Corollary 8 we see that
C (P,A) = Q = C (PB , A), and therefore P (A) = PB(A).
This completes the proof.

7 Application to Information Theory
In this section, we consider some application of our

formalism to information theory. Instantaneous codes
play a basic role in the noiseless source coding problem
in information theory, as described in what follows.

Let Ω be an alphabet, as in the preceding sections.
An instantaneous code C for Ω is an injective mapping
from Ω to {0, 1}∗ such that C(Ω) := {C(a) | a ∈ Ω} is a
prefix-free set. A sequence a1, a2, . . . , aN ∈ Ω is called
a message. On the other hand, the finite binary string
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C(a1)C(a2) . . . C(aN ) is called the coded message for a
message a1, a2, . . . , aN .

Let P ∈ P(Ω) be a finite probability space, and let
X1, X2, . . . , XN be independent identically distributed
random variables drawn from the probability mass func-
tion P (a) with a ∈ Ω. In the source coding problem,
the probability space P is called an information source
which emits a symbol in Ω. The objective of the noise-
less source coding problem is to minimize the length of
the coded message for a message a1, a2, . . . , aN gener-
ated by the random variables X1, X2, . . . , XN as N →
∞. For that purpose, it is sufficient to consider the av-
erage codeword length LP (C) of an instantaneous code
C for a finite probability space P defined by

LP (C) :=
∑
a∈Ω

P (a) |C(a)|

independently on the value of N . We can then show
that LP (C) ≥ H(P ) for every instantaneous code C for
Ω and every finite probability space P ∈ P(Ω), where
H(P ) is the Shannon entropy of P defined by

H(P ) := −
∑
a∈Ω

P (a) log2 P (a).

Hence, the Shannon entropy gives the data compression
limit for the noiseless source coding problem based on
instantaneous codes. For this reason, it is important to
consider the notion of absolutely optimality of an in-
stantaneous code, where we say that an instantaneous
code C for Ω is absolutely optimal for a finite probaility
space P ∈ P(Ω) if LP (C) = H(P ).

As an application of our formalism, we regard a
“typical” infinite sequence in Ω∞ which is a realiza-
tion of the infinite sequence of the random variables
X1, X2, X3, . . . as an ensemble for the finite probabil-
ity space P . For any α ∈ Ω∞ we denote by CodedC (α)
the infinite binary sequence

C(α(1))C(α(2))C(α(3)) . . . . . . .

We can then show the following theorem.

Theorem 16. Let P ∈ P(Ω), and let C be an instan-
taneous code for Ω. Suppose that α is an emsemble for
P . Then the following conditions are equivalent:

(i) The instantaneous code C is absolutely optimal
for the finite probability space P .

(ii) CodedC (α) is Martin-Löf random.

Recall from Theorem 3 that Martin-Löf random
sequences are precisely the infinite binary sequences
which cannot be compressible any more. Thus, Theo-
rem 16 rephrases in a sharp manner the basic result of
the noiseless source coding problem that the Shannon
entropy gives the data compression limit, in the form
of our formalism.
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