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Abstract

In this talk, we show the following fixed point theorem on partial random-
ness, from the point of view of algorithmic randomness.

Theorem| [fixed point theorem on partial randomness]
For every T € (0,1), if Q(T) is a computable real number, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T-random and T-compressible,
H(T

(i) lim

n—aoeo

After that, we introduce variants of this theorem, and investigate their
properties and relation.



Preliminaries: Program-size Complexity

e {0,1}*:={),0,1,00,01,10,11,000,...}.

e For any s € {0,1}*, |s| denotes the length of s.

e Let V C {0,1}*. We say V is prefix-free if for any distinct s and t €V, s
iIs not a prefix of t.

For example  {0,10}: prefix-free {0,01}: not prefix-free

Let U be a universal self-delimiting Turing machine.
DomU, i.e., the domain of definition of U, is a prefix-free set.

Definition| The program-size complexity (or Kolmogorov complexity) H(s)
of s € {0,1}* is defined by

H(s) := min { |p] )pe {0,1}* & U(p) =5 }.

H(s): The length of the shortest input for the universal self-delimiting Tur-
ing machine U to output s. —> H(s): The degree of randomness of s.



Preliminaries: Randomness of Real Number

Definition

For any a € R and n € NT, we denote by a [ n the first n bits

of the base-two expansion of a — |«a],

Definition

[weak Chaitin randomness, Chaitin 1975]

We say a € R is weakly Chaitin random if n < H(a [ n) + O(1),

This notion is equivalent to Martin-L6f randomness (Schnorr).

Definition

T heorem

[Chaitin’s halting probability €2, Chaitin 1975]

[Chaitin 1975] < is weakly Chaitin random.



Preliminaries: Partial Randomness of Real Number

The partial randomness (degree of randomness) of a real number can be
characterized by a real number.

Definition | [weak Chaitin T-randomness, Tadaki 2002] Let T € [0, 1].
We say a € R is weakly Chaitin T-random if Tn < H(a [ n) + O(1).

In the case of T' = 1, the weak Chaitin T-randomness results in the weak
Chaitin randomness.

Definition | [T-compressibility] Let T € [0, 1].
We say a € R is T-compressible if H(a [ n) < Tn 4+ o(n),

H
which is equivalent to limsup ([ n) <T.
n— 00 n

If o € R is weakly Chaitin T-random and T-compressible, then

lim H(a [ n)

n—aoeo n

The compression rate of o« by program-size complexity equals to T
(The converse does not necessarily hold.)

=1T.




Preliminaries: Generalization of 2

Definition| [generalization of Chaitin’'s €2, Tadaki 1999]

p|

QT):= Y 27T (T > 0).
peDomU

Q1) = Q.

Theorem| [Tadaki 1999] Let T € R.

(i) IFO< T <1andTiscomputable, then Q(T) is weakly Chaitin T-random
and T-compressible. —> The compression rate of Q(T) equals to T.
(ii) If 1 < T, then Q(T) diverges to oo.

Here, T is called computable if the mapping Nt 3 n — T | n is a total
recursive function.




Fixed Point Theorem on Partial Randomness

Theorem | [fixed point theorem on partial randomness, Tadaki, CiE 2008]

For every T € (0,1), if Q(T) is a computable real number, then
(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T-random and T-compressible,

H(T I n) _r

(i) lim

n—aoeo

]

Here, a real « is called right-computable if the set {r e Q| a < r} is r.e.,
and « is called left-computable if —« is right-computable.




Fixed Point Theorem on Partial Randomness: Proof

Proof of Fixed Point Theorem

Theorem| [fixed point theorem on partial randomness,] [ ]

For every T € (0,1), if Q(T) is a computable real number, then
(i) T is right-computable and not left-computable,
(ii) T is weakly Chaitin T-random and T-compressible,

(iii) lim_ H(an ") _ o (]
Lemma For every T € (0,1), if Q(T) is right-computable
then T is also right-computable. H
Lemma For every T € (0,1), if Q(T) is left-computable
and T is right-computable, then T is T-compressible. H
Lemma For every T € (0,1), if Q(T) is right-computable

then T is weakly Chaitin T-random. L]



Proofs of the three lemmmas

Lemma For every T € (0,1), if Q(T) is right-computable

then 7' is also right-computable.

Proof) For each k € NT and z € (0,1), let wy(z) = Sk, 27IPil/z, where
P1,P2, D3y e v IS a particular recursive enumeration of bomU.

Then we see that, for every r € QN (0,1), T < r if and only if there exists
k € NT such that Q(7) < wi(r). This is because Q(z) is an increasing
function of z € (0, 1] and limy_, ., wi(r) = Q(r).

Since Q(T) is right-computable,

the set {r e QN (0,1) | Ik € NT Q(T) < wi(r)} is r.e. and therefore

the set {reQn(0,1) | T < r} is also r.e. L]

Lemma For every T € (0,1), if Q(T) is left-computable

and T is right-computable, then T is T-compressible.
Proof) Omitted. L]



Lemma For every T € (0,1), if Q(T) is right-computable

then T is weakly Chaitin T-random.

Proof) The following procedure calculates a partial recursive function
w: {0,1}* — {0,1}* such that Tn —Tc < H(W(T | n)). The lemma fol-
lows from H(W(T [ n)) < H(T | n) 4+ O(1). Let wy(z) =Yk _, 2~ Ipil/=,
Procedure: Given T | n, one can effectively find kg which satisfies

Q(T) < wy, (0.(T [ n) +27).

This is possible because Q2(x) is an increasing function of z, limy_, ., wi(r) =
Q(r) for every r € QN (0,1), and Q(T) is right-computable. It follows that

> |4
Z 27T =Q(T) — ka(T) < ka(O.(T 'n)+2"") — ka(T) <207,
1=ko+1

[P
Hence, for every i > kg, 27 T < 2™ and therefore Tn — Tc < |p;|. Thus,

by calculating the set { U(p;) | i < kg } and picking any one finite binary
string s which is not in this set, one can then obtain s € {0,1}* such that
Tn —Tec < H(s). L]
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Remark on the sufficient condition in the fixed Point T heorem

Theorem| [fixed point theorem on partial randomness] | ]
For every T € (0,1), if Q(T") is computable then T is weakly Chaitin T-
random and T-compressible. L]

Note that Q2(x) is a strictly increasing continuous function of x € (0,1), and
the set of all computable real numbers is dense in R. Thus,

Theorem| Theset {T € (0,1) | Q(T) is computable} isdensein (0,1). [

Corollary | [density of the fixed points]

The set {T € (0,1) | T is weakly Chaitin T-random and T-compressible} is
dense in (0,1). L]

At this point, the following question would arise naturally:

Question| Is this sufficient condition, i.e., the computability of Q(T),
also necessary for T' to be a fixed point ?

Completely not ! (as we can see through the following

argument)
11



Thermodynamic Quantities in AI'T: Definition

introduced in the following manner.

Definition| Let ¢1,92,93,...... be an arbitrary enumeration of DomU. L[]

Note that the results of this talk are independent of the choice of {g;}.

Definition |[thermodynamic quantities in AI'T, Tadaki, CiE 2008] Let T > 0.

‘qz‘

(i) Partition Function: Z(T) := I|m Z.(T), where Z,.(T) = Z 27T .
i=1
(ii) Free Energy: F(T) := klim Fi.(T), where Fi.(T) = —Tlog, Z;.(T).
— 00

|qu|

(ii) Energy: E(T) := kILmOO E(T), where E (T) = ~ (T) Z ;| 2

E(T) — Fk(T)
— .

L]

(iii) Entropy: S(T) := klim S(T), where S,.(T) =
— OO

(i) Z(T) = Q(T). (ii) The real T corresponds to “temperature”.

12




Thermodynamic Quantities in AI'T: Properties

The thermodynamic quantities F(T), E(T), and S(T) has the almost same
randomness properties as Q(T), i.e., Z(T).

Theorem| [free energy F(T)] Let T € R.

() IFO< T <1andT is computable, then F(T) converges to a real number
which is weakly Chaitin T-random and T-compressible.
(i) If 1 < T, then F(T) diverges to —oo. L]

Definition| We say a € R is Chaitin T-random if limy—co H(a | n)—Tn = oco.

Theorem| [energy E(T)] Let T € R.

(i) IFO< T < 1 and T is computable, then E(T) converges to a real number
which is Chaitin T-random and T-compressible.
(i) If 1 < T, then E(T) diverges to oo. L]

Theorem| [entropy S(T)] Let T € R.

() IFO<T < 1and T is computable, then S(T") converges to a real number
which is Chaitin T-random and T-compressible.
(i) If 1 < T, then S(T) diverges to oo. L]

13




Thermodynamic Quantities in AI'T: Fixed Point Theorems

In the fixed point theorem, Q(T) can be replaced by each of the thermo-
dynamic quantities F(T), E(T), and S(T).

Theorem | [fixed point theorem by the free energy F(T)]

For every T € (0,1), if F'(T) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T-random and T-compressible. L]

Theorem| [fixed point theorem by the energy E(T)]

For every T € (0,1), if E(T) is computable, then
(i) T is right-computable and not left-computable,
(ii) T is Chaitin T-random and T-compressible. L]

Theorem| [fixed point theorem by the entropy S(7T)]

For every T € (0,1), if S(T) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is Chaitin T-random and T-compressible. L]
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Proof of the fixed point theorem by free energy F(T)

Theorem| [general form of fixed point theorem] Let f: (0,1) — R. Sup-

pose that f is a strictly increasing function and there is g: (0,1) x NT = R
which satisfies the following conditions:

(ii) The mapping Q x (QnN(0,1)) > (r,k) — g(r, k) is computable.
(i) VT € (0,1) 3kgeNT Fa,beN Vik>kg

Pt |Pt1]
T STk 1) —g(T k) <27 T T

(iVYVT €(0,1) 3te(T,1) FkgeNT e, deNVEk>ky Ve (T,t)
27z —T) < g(z,k) — g(T,k) < 2%z —1T).
(V) Vitq,to € (0,1) with t1 <t J kg € NtvEk> koVx e [t1,tr] glz, k) < f(x).

(Vi) VEENT vT €(0,1) limy_rigg(z, k) = g(T, k).
Then, for every T € (0,1), if f(T) is computable, then T is weakly Chaitin

T-random and T-compressible. L]
15



Proof of the fixed point theorem by free energy F(T)

Theorem | [fixed point theorem by free energy F(T)] [ ]

For every T € (0,1), if F/(T) is a computable real number, then T is weakly
Chaitin T-random and T-compressible. [ ]

A portion of the proof:
Using the mean value theorem and the lemma below,

Sp(T)(x —=T) < Fi(T) — Fi(z) < Sp(t)(z = T)

for every k € NT and every T,z,t € (0,1) with T < = < t. On the other
hand, for every T € (0, 1), there exists kg € N+ such that, for every k£ > ko,

0 < Sy (T) < Si(T) < 5(T).

Lemma | [thermodynamic relation] Let T € (0,1) and k € NT.

(i) F(T) = =Sk(T), E,.(T) = C,(T), and Si.(T) = Ci(T)/T.
(i) F'(T) = —=S(T), E(T) = C(T), and S(T) = C(T)/T.
(iii) SE(T),Cx(T) > 0 and S(T),C(T) > O. L]
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Relation between the sufficient conditions of FPTs I

Theorem| There does not exist T' € (0,1) such that both Q(T) and F(T)
are computable.

Proof)
Contrarily, assume that both Q(7) and F(T) are computable for some
T € (0,1). Since the statistical mechanical relation F(T) = —T log, Q(T)
holds
' F(T
P

1092 QT)’

Thus, T is computable, and therefore Q2(7T) is weakly Chaitin T-random,
i.e., Tn < H((2(T)) | n) + O(1). However, this is impossible, since Q(T) is
computable and therefore H((2(T)) [ n) < 2logon + O(1). Thus we have
a contradiction. ]

{T € (0,1) | 2(T) is computable} n{T € (0,1) | F(T) is computable} = 0.
dense in (0,1) dense in (0,1)

In particular, this shows that the computability of Q2(7T") is not a necessary
condition for T to be a fixed point in the fixed point theorem by Q(T).

17



Relation between the sufficient conditions of FP Ts II

Theorem| There does not exist T' € (0,1) such that all of Q(T), E(T),
and S(T) are computable.

Proof) Use the statistical mechanical relation

S(T)—E( )

+ logo Q(T).
L]

Theorem| There does not exist T' € (0,1) such that all of F(T), E(T),
and S(T) are computable.

Proof) Use the thermodynamic relation

E(T) - F(T)
— .

S(T) =

18



Some other property of the sufficient condition in FPTs

Using the fixed point theorem by Q2(T"), some property of the computability
of Q(T) is derived.

Let Te€ (0,1) and a € (0,1]. Assume that a is computable.

Q(aT) is computable = |im H((aT) [ 1) — o = lim H(T | n)

n—00 n n—00 n
by FPT by H((aT) [n) = H(T | n) + O(1)
Theorem| SqaNS, = 0 for any distinct computable real numbers a,b € (0, 1],
where S, = {T € (0,1) | Q(aT) is computable}. L]

= al'.

For every T € (0,1), if Q(T) is computable, then for each inte-

ger n > 2, Q(T/n) is not computable. Namely,

for every T € (0,1), if thesum >~ 2~ IPI/T is computable, then its power
peDom U

sum Z (2_‘p|/T>n is not computable for every integer powern > 2. ||
peDomU
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Summary

In this talk, we introduced and showed the following fixed point theorem
on partial randomness, from the point of view of algorithmic randomness.

Theorem| [fixed point theorem on partial randomness]

For every T € (0,1), if Q(T) is a computable real number, then
(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T-random and T-compressible,
H(T

(iii) Jim
After that, we introduced several variants of this theorem, and investigate
their properties and relation. In particular, we showed that the sufficient
condition for 1" to be a fixed point is not a necessary condition in the fixed
point theorems.
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