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Abstract. We develop a statistical mechanical interpretation of algo-
rithmic information theory by introducing the notion of thermodynamic
quantities, such as free energy, energy, statistical mechanical entropy,
and specific heat, into algorithmic information theory. We investigate
the properties of these quantities by means of program-size complexity
from the point of view of algorithmic randomness. It is then discovered
that, in the interpretation, the temperature plays a role as the com-
pression rate of the values of all these thermodynamic quantities, which
include the temperature itself. Reflecting this self-referential nature of
the compression rate of the temperature, we obtain fixed point theorems
on compression rate.
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1 Introduction

Algorithmic information theory is a framework to apply information-theoretic
and probabilistic ideas to recursive function theory. One of the primary concepts
of algorithmic information theory is the program-size complezity (or Kolmogorov
complezity) H(s) of a finite binary string s, which is defined as the length of the
shortest binary program for the universal self-delimiting Turing machine U to
output s. By the definition, H (s) can be thought of as the information content of
the individual finite binary string s. In fact, algorithmic information theory has
precisely the formal properties of classical information theory (see Chaitin [3]).
The concept of program-size complexity plays a crucial role in characterizing
the randomness of a finite or infinite binary string. In [3] Chaitin introduced the
halting probability {2 as an example of random infinite binary string. His 2 is
defined as the probability that the universal self-delimiting Turing machine U
halts, and plays a central role in the metamathematical development of algorith-
mic information theory. The first n bits of the base-two expansion of (2 solves
the halting problem for a program of size not greater than n. By this property,
the base-two expansion of {2 is shown to be a random infinite binary string.
In [7,8] we generalized Chaitin’s halting probability {2 to 2 by

Qb= Y 2B, (1)
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so that the degree of randomness of 2 can be controlled by a real number D
with 0 < D < 1. Here, dom U denotes the set of all programs p for U. As D
becomes larger, the degree of randomness of 27 increases. When D = 1, 2P
becomes a random real number, i.e., 2 = 2. The properties of 2 and its
relations to self-similar sets were studied in Tadaki [7, 8].

Recently, Calude and Stay [2] pointed out a formal correspondence between
2P and a partition function in statistical mechanics. In statistical mechanics,
the partition function Z(7T') at temperature T is defined by

Z(T) =Y e 7,

zeX

where X is a complete set of energy eigenstates of a statistical mechanical sys-
tem and E, is the energy of an energy eigenstate z. The constant k is called the
Boltzmann Constant. The partition function Z(T) is of particular importance in
equilibrium statistical mechanics. This is because all the thermodynamic quanti-
ties of the system can be expressed by using the partition function Z(T"), and the
knowledge of Z(T') is sufficient to understand all the macroscopic properties of
the system. Calude and Stay [2] pointed out, in essence, that the partition func-
tion Z(T) has the same form as 2P by performing the following replacements
in Z(T):

Replacements 1

(i) Replace the complete set X of energy eigenstates x by the set domU of all
programs p for U.
(ii) Replace the energy E, of an energy eigenstate x by the length |p| of a program

p.
(iii) Set the Boltzmann Constant k to 1/In2, where the In denotes the natural
logarithm. ad

In this paper, inspired by their suggestion above, we develop a statistical me-
chanical interpretation of algorithmic information theory, where 27 appears as
a partition function.

Generally speaking, in order to give a statistical mechanical interpretation to
a framework which looks unrelated to statistical mechanics at first glance, it is
important to identify a microcanonical ensemble in the framework. Once we can
do so, we can easily develop an equilibrium statistical mechanics on the frame-
work according to the theoretical development of normal equilibrium statistical
mechanics. Here, the microcanonical ensemble is a certain sort of uniform proba-
bility distribution. In fact, in the work [9] we developed a statistical mechanical
interpretation of the noiseless source coding scheme in information theory by
identifying a microcanonical ensemble in the scheme. Then, in [9] the notions
in statistical mechanics such as statistical mechanical entropy, temperature, and
thermal equilibrium are translated into the context of noiseless source coding.

Thus, in order to develop a statistical mechanical interpretation of algorith-
mic information theory, it is appropriate to identify a microcanonical ensemble
in the framework of the theory. Note, however, that algorithmic information



theory is not a physical theory but a purely mathematical theory. Therefore,
in order to obtain significant results for the development of algorithmic infor-
mation theory itself, we have to develop a statistical mechanical interpretation
of algorithmic information theory in a mathematically rigorous manner, unlike
in normal statistical mechanics in physics where arguments are not necessarily
mathematically rigorous. A fully rigorous mathematical treatment of statistical
mechanics is already developed (see Ruelle [6]). At present, however, it would
not as yet seem to be an easy task to merge algorithmic information theory with
this mathematical treatment in a satisfactory manner.

On the other hand, if we do not stick to the mathematical strictness of an
argument and make an argument on the same level of mathematical strictness as
statistical mechanics in physics, we can develop a statistical mechanical interpre-
tation of algorithmic information theory while realizing a perfect correspondence
to normal statistical mechanics. In the physical argument, we can identify a mi-
crocanonical ensemble in algorithmic information theory in a similar manner
to [9], based on the probability measure which gives Chaitin’s {2 the meaning
of the halting probability actually.! In consequence, for example, the statistical
mechanical meaning of 27 is clarified.

In this paper, we develop a statistical mechanical interpretation of algorith-
mic information theory in a different way from the physical argument mentioned
above.? We introduce the notion of thermodynamic quantities into algorithmic
information theory based on Replacements 1 above.

After the preliminary section on the mathematical notion needed in this pa-
per, in Section 3 we introduce the notion of the thermodynamic quantities at any
given fixed temperature T, such as partition function, free energy, energy, statis-
tical mechanical entropy, and specific heat, into algorithmic information theory
by performing Replacements 1 for the corresponding thermodynamic quantities
in statistical mechanics. These thermodynamic quantities in algorithmic infor-
mation theory are real numbers which depend only on the temperature 7. We
prove that if the temperature T is a computable real number with 0 < T < 1
then, for each of these thermodynamic quantities, the compression rate by the
program-size complexity H is equal to T'. Thus, the temperature T' plays a role
as the compression rate of the thermodynamic quantities in this statistical me-
chanical interpretation of algorithmic information theory.

Among all thermodynamic quantities in thermodynamics, one of the most
typical thermodynamic quantities is temperature itself. Thus, based on the re-
sults of Section 3, the following question naturally arises: Can the compression
rate of the temperature T be equal to the temperature itself in the statistical
mechanical interpretation of algorithmic information theory ? This question is
rather self-referential. However, in Section 4 we answer it affirmatively by prov-

! Due to the 10-page limit, we omit the detail of the physical argument in this paper.
It will be included in a full version of this paper, and is also available in Section 6 of
an extended and electronic version of this paper at URL: http://arxiv.org/abs/
0801.4194v1

2 We make an argument in a fully mathematically rigorous manner in this paper.



ing Theorem 9. One consequence of Theorem 9 has the following form: For every

T € (0,1),if 2T = > pedom U 2-# isa computable real number, then
H(T,
lim (T») =T,
n— oo n

where T, is the first n bits of the base-two expansion of T'. This is just a fixed
point theorem on compression rate, which reflects the self-referential nature of
the question.

The works [7, 8] on 2 might be regarded as an elaboration of the technique
used by Chaitin [3] to prove that {2 is random. The results of this paper may
be regarded as further elaborations of the technique. Due to the 10-page limit,
we omit most proofs. A full paper describing the details of the proofs is in
preparation.?

2 Preliminaries

We start with some notation about numbers and strings which will be used in
this paper. N = {0,1,2,3,...} is the set of natural numbers, and N* is the set
of positive integers. Q is the set of rational numbers, and R is the set of real
numbers. {0,1}* = {)\,0,1,00,01,10,11,000,001,010,...} is the set of finite
binary strings, where \ denotes the empty string. For any s € {0,1}*, |s| is the
length of s. A subset S of {0,1}* is called a prefiz-free set if no string in S is a
prefix of another string in S. {0,1}°° is the set of infinite binary strings, where
an infinite binary string is infinite to the right but finite to the left. For any
a € {0,1}> and any n € N*, «,, is the prefix of a of length n. For any partial
function f, the domain of definition of f is denoted by dom f. We write “r.e.”
instead of “recursively enumerable.”

Normally, o(n) denotes any function f: N* — R such that lim,, .., f(n)/n =
0. On the other hand, O(1) denotes any function g: N* — R such that there is
C € R with the property that |g(n)| < C for all n € NT.

Let T be an arbitrary real number. 7' mod 1 denotes T'— |T'|, where |T| is
the greatest integer less than or equal to T'. Hence, T'mod 1 € [0, 1). We identify
a real number 7' with the infinite binary string « such that 0.« is the base-two
expansion of T'mod 1 with infinitely many zeros. Thus, T,, denotes the first n
bits of the base-two expansion of T'mod 1 with infinitely many zeros.

We say that a real number T is computable if there exists a total recursive
function f: NT — Q such that |T — f(n)] < 1/n for all n € NT. We say that
T is right-computable if there exists a total recursive function g: Nt — Q such
that T < g(n) for all n € N* and lim, o g(n) = T. We say that T is left-
computable if —T is right-computable. It is then easy to see that, for any 7' € R,
T is computable if and only if T is both right-computable and left-computable.
See e.g. Weihrauch [12] for the detail of the treatment of the computability of
real numbers and real functions on a discrete set.

3 The details of the proofs are also available in an extended and electronic version of
this paper at URL: http://arxiv.org/abs/0801.4194v1



2.1 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic
information theory [3,4]. A computer is a partial recursive function C': {0,1}* —
{0,1}* such that dom C is a prefix-free set. For each computer C' and each
s € {0,1}*, Hc(s) is defined by He(s) =min { [p| | p € {0,1}* & C(p) =s}. A
computer U is said to be optimal if for each computer C' there exists a constant
sim(C') with the following property; if C(p) is defined, then there is a p’ for
which U(p') = C(p) and |p’| < |p| +sim(C). It is easy to see that there exists an
optimal computer. Note that the class of optimal computers equals to the class
of functions which are computed by universal self-delimiting Turing machines
(see Chaitin [3] for the detail). We choose a particular optimal computer U as
the standard one for use, and define H(s) as Hy(s), which is referred to as the
program-size complezity of s or the Kolmogorov complezity of s.
Chaitin’s halting probability {2 is defined by

0= Z 2~ IPl,

pedom U

For any a € {0,1}°°, we say that « is weakly Chaitin random if there exists ¢ € N
such that n —c¢ < H(ay,) for all n € Nt [3,4]. Then Chaitin [3] showed that §2 is
weakly Chaitin random. For any « € {0,1}°°, we say that « is Chaitin random
if limy,— 00 H(ay,) —n = 00 [3,4]. It is then shown that, for any « € {0,1}*°, «
is weakly Chaitin random if and only if « is Chaitin random (see Chaitin [4] for
the proof and historical detail). Thus {2 is Chaitin random.

In the works [7, 8], we generalized the notion of the randomness of an infinite
binary string so that the degree of the randomness can be characterized by a
real number D with 0 < D < 1 as follows.

Definition 1 (weak Chaitin D-randomness and D-compressibility). Let
D € R with D > 0, and let o € {0,1}>°. We say that « is weakly Chaitin
D-random if there exists ¢ € N such that Dn — ¢ < H(ay,) for all n € NT.
We say that « is D-compressible if H(ay,) < Dn 4+ o(n), which is equivalent to
lim,, oo H(ay)/n < D. O

In the case of D = 1, the weak Chaitin D-randomness results in the weak
Chaitin randomness. For any D € [0,1] and any a € {0,1}*, if « is weakly
Chaitin D-random and D-compressible, then

lim H{an)

n— 00 n

=D. (2)

Hereafter the left-hand side of (2) is referred to as the compression rate of an
infinite binary string « in general. Note, however, that (2) does not necessarily
imply that a is weakly Chaitin D-random.

In the works [7, 8], we generalized Chaitin’s halting probability 2 to 27 by
(1) for any real number D > 0. Thus, 2 = 21. If 0 < D < 1, then 2P converges
and 0 < 2P < 1, since NP < 2 < 1.



Theorem 2 (Tadaki [7,8]). Let D € R.

(i) If 0 < D < 1 and D is computable, then 2P is weakly Chaitin D-random
and D-compressible.
(ii) If 1 < D, then 2P diverges to cc. O

Definition 2 (Chaitin D-randomness, Tadaki (7, 8]). Let D € R with D >
0, and let o € {0,1}°°. We say that « is Chaitin D-random if lim, o H (o) —
Dn = oo. O

In the case of D = 1, the Chaitin D-randomness results in the Chaitin ran-
domness. Obviously, for any D € [0,1] and any a € {0,1}*, if « is Chaitin
D-random, then « is weakly Chaitin D-random. However, in 2005 Reimann
and Stephan [5] showed that, in the case of D < 1, the converse does not nec-
essarily hold. This contrasts with the equivalence between the weakly Chaitin
randomness and the Chaitin randomness, each of which corresponds to the case
of D =1.

For each real numbers @ > 0 and D > 0, we define W(Q, D) by

W@D)= Y |9 F.

pedom U

As the first result of this paper, we can show the following theorem.

Theorem 3. Let QQ and D be positive real numbers.

(i) If Q and D are computable and 0 < D < 1, then W(Q, D) converges to a
left-computable real number which is Chaitin D-random and D-compressible.
(i) If 1 < D, then W(Q, D) diverges to co. O

Thus, we see that the weak Chaitin D-randomness in Theorem 2 is replaced
by the Chaitin D-randomness in Theorem 3 in exchange for the divergence at
D=1.

3 Temperature as a compression rate

In this section we introduce the notion of thermodynamic quantities such as
partition function, free energy, energy, statistical mechanical entropy, and spe-
cific heat, into algorithmic information theory by performing Replacements 1
for the corresponding thermodynamic quantities in statistical mechanics.* We
investigate their convergence and the degree of randomness. For that purpose,
we first choose a particular enumeration q1, ¢o, g3, ... of the countably infinite
set dom U as the standard one for use throughout this section.’

4 For the thermodynamic quantities in statistical mechanics, see Chapter 16 of 1]
and Chapter 2 of [11]. To be precise, the partition function is not a thermodynamic
quantity but a statistical mechanical quantity.

® The enumeration {¢;} is quite arbitrary and therefore we do not, ever, require {g;}
to be a recursive enumeration of dom U.



In statistical mechanics, the partition function Zg,(T) at temperature T is
given by

Zsm(T) = Z 67%,

zeX

3)

Motivated by the formula (3) and taking into account Replacements 1, we in-
troduce the notion of partition function into algorithmic information theory as
follows.

Definition 3 (partition function). For each n € N and each real number
T > 0, we define Z,(T) by
Zn(T) = 9%
i=1
Then, the partition function Z(T) is defined by Z(T) = limy,— o0 Zn(T), for each
T > 0. O

Since Z(T) = 27T, we restate Theorem 2 as in the following form.

Theorem 4 (Tadaki [7,8]). Let T € R.

(i) If 0 <T <1 and T is computable, then Z(T) converges to a left-computable
real number which is weakly Chaitin T-random and T'-compressible.
(ii) If 1 < T,then Z(T) diverges to oc. O

In statistical mechanics, the free energy Fyn,(T) at temperature T is given

by
Fo(T) = —kT In Zy,, (T), (4)
where Zgn(T) is given by (3). Motivated by the formula (4) and taking into

account Replacements 1, we introduce the notion of free energy into algorithmic
information theory as follows.

Definition 4 (free energy). For eachn € NT and each real number T > 0, we
define F,(T) by F,(T) = —Tlogy Z,(T). Then, for each T > 0, the free energy
F(T) is defined by F(T) = limy_,00 Fr(T). O
Theorem 5. Let T € R.

(i) If 0 < T <1 and T is computable, then F(T) converges to a right-computable
real number which is weakly Chaitin T-random and T'-compressible.
(ii) If 1 < T,then F(T) diverges to —oco. O

In statistical mechanics, the energy Eqy(T) at temperature T is given by

1 EQ’)
Esm T)= 5—rx Eﬂc R
)=z 2 ®)

where Zgy(T) is given by (3). Motivated by the formula (5) and taking into
account Replacements 1, we introduce the notion of energy into algorithmic
information theory as follows.



Definition 5 (energy). For each n € N* and each real number T > 0, we
define E,(T) by

n

1 ]
E,(T) = —— 27T
1) = 7 o

Then, for each T > 0, the energy E(T) is defined by E(T) = lim, . E,(T). O

Theorem 6. Let T € R.

(i) If 0 < T < 1 and T is computable, then E(T) converges to a left-computable

real number which is Chaitin T-random and T -compressible.
(i) If 1 < T, then E(T) diverges to oc. O

In statistical mechanics, the entropy S (7') at temperature T is given by

1

TESHI(T) + kln Z, (T), (6)
where Zgy(T) and Eqy, (T') are given by (3) and (5), respectively. Motivated by
the formula (6) and taking into account Replacements 1, we introduce the notion
of statistical mechanical entropy into algorithmic information theory as follows.

Ssm(T) =

Definition 6 (statistical mechanical entropy). For each n € N* and each
real number T > 0, we define S, (T) by Sp(T) = ~E,(T) + logy Z,(T). Then,
for each T > 0, the statistical mechanical entropy S(T) is defined by S(T) =
limy, o0 SR (T). O

Theorem 7. Let T € R.

(i) If 0 <T < 1 and T is computable, then S(T) converges to a left-computable
real number which is Chaitin T-random and T-compressible.
(i) If 1 < T, then S(T') diverges to co. O

Finally, in statistical mechanics, the specific heat Cy, (T) at temperature T
is given by

d
dar
where Egy, (T) is given by (5). Motivated by this formula (7), we introduce the
notion of specific heat into algorithmic information theory as follows.

Csm (T) = Esrn (T), (7)

Definition 7 (specific heat). For each n € Nt and each real number T > 0,
we define Cn(T) by C,(T) = E/(T), where E|(T) is the derived function of
E,.(T). Then, for each T > 0, the specific heat C(T) is defined by C(T) =
lim,, o0 Cp (T). a

Theorem 8. Let T € R.

(i) If0 < T < 1 and T is computable, then C(T') converges to a left-computable
real number which is Chaitin T-random and T-compressible, and moreover
C(T) = E'(T) where E'(T) is the derived function of E(T).

(is) If T =1, then C(T) diverges to co. O



Thus, the theorems in this section show that the temperature T plays a role
as the compression rate for all the thermodynamic quantities introduced into
algorithmic information theory in this section.

These theorems also show that the values of the thermodynamic quantities:
partition function, free energy, energy, and statistical mechanical entropy diverge
in the case of T' > 1. This phenomenon might be regarded as some sort of phase
transition in statistical mechanics.®

4 Fixed point theorems on compression rate

In this section, we show the following theorem and its variant.

Theorem 9 (fixed point theorem on compression rate). For every T €
(0,1), if Z(T) is a computable real number, then the following hold:

(i) T is right-computable and not left-computable.
(i) T is weakly Chaitin T-random and T'-compressible.
(#3) lim, oo H(T,)/n=T. O

Theorem 9 follows immediately from the following three theorems.

Theorem 10. For every T € (0,1), if Z(T) is a right-computable real number,
then T is weakly Chaitin T-random. O

Theorem 11. For every T € (0,1), if Z(T) is a right-computable real number,
then T 1is also a right-computable real number. a

Theorem 12. For every T € (0,1), if Z(T) is a left-computable real number
and T is a right-computable real number, then T is T-compressible. a

Theorem 9 is just a fixed point theorem on compression rate, where the
computability of the value Z(T) gives a sufficient condition for a real number
T € (0,1) to be a fixed point on compression rate. Note that Z(T) is a strictly
increasing continuous function on (0,1). In fact, Tadaki [7, 8] showed that Z(T')
is a function of class C* on (0,1). Thus, since the set of all computable real
numbers is dense in R, we have the following for this sufficient condition.

Theorem 13. The set {T € (0,1) | Z(T) is computable} is dense in [0,1]. O
We thus have the following corollary of Theorem 9.
Corollary 1. The set {T € (0,1) | lim,,—.oo H(T),)/n =T} is dense in [0,1]. O

From the point of view of the statistical mechanical interpretation introduced
in the previous section, Theorem 9 shows that the compression rate of temper-
ature is equal to the temperature itself. Thus, Theorem 9 further confirms the
role of temperature as the compression rate, which is observed in the previous
section.

In a similar manner to the proof of Theorem 9, we can prove another version
of a fixed point theorem on compression rate as follows. Here, the weak Chaitin
T-randomness is replaced by the Chaitin T-randomness.

5 Tt is still open whether C(T) diverges or not in the case of T > 1.



Theorem 14 (fixed point theorem on compression rate II). Let @ be
a computable real number with @ > 0. For every T € (0,1), if W(Q,T) is a
computable real number, then the following hold:

(i) T is right-computable and not left-computable.
(i) T is Chaitin T-random and T'-compressible. O

For the sufficient condition of Theorem 14, in a similar manner to the case
of Theorem 9, we can show that, for every @ > 0, the set {T" € (0,1) |
W(Q,T) is computable } is dense in [0, 1].
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