Chaitin 2 Numbers and Halting Problems

Kohtaro Tadaki

Research and Development Initiative, Chuo University
CREST, JST
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail: tadaki@kc.chuo-u.ac.jp

Abstract. Chaitin [G. J. Chaitin, J. Assoc. Comput. Mach., vol. 22,
pp. 329-340, 1975] introduced his {2 number as a concrete example of
random real. The real {2 is defined as the probability that an optimal
computer halts, where the optimal computer is a universal decoding al-
gorithm used to define the notion of program-size complexity. Chaitin
showed {2 to be random by discovering the property that the first n bits
of the base-two expansion of (2 solve the halting problem of the optimal
computer for all binary inputs of length at most n. In the present paper
we investigate this property from various aspects. It is known that the
base-two expansion of {2 and the halting problem are Turing equivalent.
We consider elaborations of both the Turing reductions which constitute
the Turing equivalence. These elaborations can be seen as a variant of the
weak truth-table reduction, where a computable bound on the use func-
tion is explicitly specified. We thus consider the relative computational
power between the base-two expansion of {2 and the halting problem by
imposing the restriction to finite size on both the problems.

Key words: algorithmic information theory, Chaitin {2 number, halting
problem, Turing reduction, algorithmic randomness, program-size com-
plexity

1 Introduction

Algorithmic information theory (AIT, for short) is a framework for applying
information-theoretic and probabilistic ideas to recursive function theory. One
of the primary concepts of AIT is the program-size complezity (or Kolmogorov
complezity) H(s) of a finite binary string s, which is defined as the length of the
shortest binary input for a universal decoding algorithm U, called an optimal
computer, to output s. By the definition, H(s) can be thought of as the informa-
tion content of the individual finite binary string s. In fact, AIT has precisely the
formal properties of classical information theory (see Chaitin [2]). In particular,
the notion of program-size complexity plays a crucial role in characterizing the
randomness of an infinite binary string, or equivalently, a real. In [2] Chaitin
introduced the halting probability {2y as an example of random real. His {2y is
defined as the probability that the optimal computer U halts, and plays a central
role in the metamathematical development of AIT. The real {2y is shown to be
random, based on the following fact:

Fact 1 (Chaitin [2]) The first n bits of the base-two expansion of 2y solve the
halting problem of U for inputs of length at most n. a

In this paper, we first consider the following converse problem:

Problem 1 For every positive integer n, if n and the list of all halting inputs
for U of length at most n are given, can the first n bits of the base-two expansion
of 2y be calculated ? O

As a result of this paper, we can answer this problem negatively. In this
paper, however, we consider more general problems in the following forms. Let
V and W be arbitrary optimal computers.

Problem 2 Find a succinct equivalent characterization of a total recursive func-
tion f: NT — N which satisfies the condition: For alln € NV, if n and the list of
all halting inputs for V' of length at mostn are given, then the first n— f(n)—O(1)
bits of the base-two expansion of 2w can be calculated. O

Problem 3 Find a succinct equivalent characterization of a total recursive func-
tion f: NT — N which satisfies the condition: For infinitely many n € NV, if n
and the list of all halting inputs for V' of length at most n are given, then the
first n — f(n) — O(1) bits of the base-two expansion of 2w can be calculated. O

Here NT denotes the set of positive integers and N = {0} UNT. Theorem 4
and Theorem 10 below are two of the main results of this paper. On the one hand,
Theorem 4 gives to Problem 2 a solution that the total recursive function f must
satisfy > 7 2-/(") < 50, which is the Kraft inequality in essence. Note that the
condition >_>7 | 277" < oo holds for f(n) = [(1 + ¢€)log, n| with an arbitrary
computable real € > 0, while this condition does not hold for f(n) = [log,n|.
On the other hand, Theorem 10 gives to Problem 3 a solution that the total
recursive function f must not be bounded to the above. Theorem 10 also results
in Corollary 2 below, which refutes Problem 1 completely.

It is also important to consider whether the bound n on the length of halting
inputs given in Fact 1 is tight or not. We consider this problem in the following
form:

Problem 4 Find a succinct equivalent characterization of a total recursive func-
tion f: NT — N which satisfies the condition: For alln € Nt ifn and the first n
bits of the base-two expansion of {2y are given, then the list of all halting inputs
for W of length at most n+ f(n) — O(1) can be calculated. O

Theorem 11, which is one of the main results of this paper, gives to Problem 4
a solution that the total recursive function f must be bounded to the above.
Thus, we see that the bound n on the length of halting inputs given in Fact 1 is
tight up to an additive constant.

It is well known that the base-two expansion of {2y and the halting problem
of U are Turing equivalent, i.e., 2y =7 dom U holds, where dom U denotes the

domain of definition of U. This paper investigates an elaboration of the Turing
equivalence. For example, consider the Turing reduction 2y <p dom U, which
partly constitutes the Turing equivalence 2y =7 dom U. The Turing reduction
can be equivalent to the condition that there exists an oracle deterministic Turing
machine M such that, for all n € N,

MdomU(,n) — QUFn, (1>

where 2y [, denotes the first n bits of the base-two expansion of (2. Let
g: Nt — N and h: NT — N be total recursive functions. Then the condition
(1) can be elaborated to the condition that there exists an oracle deterministic
Turing machine M such that, for all n € NT,

MdOmU[g(n) (n) = QU rh(n)v (2)

where dom U [g(,) denotes the set of all strings in domU of length at most
g(n). This elaboration allows us to consider the asymptotic behavior of h which
satisfies the condition (2), for a given g. We might regard g as the degree of the
relaxation of the restrictions on the computational resource (i.e., on the oracle
dom U) and h as the difficulty of the problem to solve. Thus, even in the context
of computability theory, we can deal with the notion of asymptotic behavior in
a manner like in computational complexity theory in some sense. Note also that
the condition (2) can be seen as a variant of the weak truth-table reduction of
the function {2y [,y of n to domU, where a computable bound on the use of
MmUY (n) is explicitly specified by the function g. Theorem 4, a solution to
Problem 2, is obtained as a result of the investigation in this line, and gives the
upper bound of the function h in the case of g(n) = n.

The other Turing reduction dom U <t {2y, which constitutes 2y =7 dom U,
is also elaborated in the same manner as above to lead to Theorem 11, a solution
to Problem 4.

Thus, in this paper, we study the relationship between the base-two expansion
of {2 and the halting problem of an optimal computer using a more rigorous and
insightful notion than the notion of Turing equivalence. The paper is organized as
follows. We begin in Section 2 with some preliminaries to AIT. We then present
Theorems 4, 10, and 11 in Sections 3, 4, and 5, respectively. Due to the 10-page
limit, we omit some proofs, in particular, the proof of Theorem 10. A full paper
which describes all the proofs and other related results is in preparation.

2 Preliminaries

We start with some notation about numbers and strings which will be used in
this paper. #5S is the cardinality of S for any set S. N = {0, 1,2,3, ...} is the set
of natural numbers, and NV is the set of positive integers. Z is the set of integers,
and Q is the set of rationals. R is the set of reals. Normally, O(1) denotes any
function f: Nt — R such that there is C' € R with the property that | f(n)| < C
for all n € N*.

{0,1}* = {A,0,1,00,01,10,11,000,...} is the set of finite binary strings
where A denotes the empty string, and {0,1}* is ordered as indicated. We iden-
tify any string in {0,1}* with a natural number in this order, i.e., we consider
¢: {0,1}* — N such that ¢(s) = 1s — 1 where the concatenation 1s of strings 1
and s is regarded as a dyadic integer, and then we identify s with ¢(s). For any
s € {0,1}*, |s| is the length of s. A subset S of {0,1}* is called prefiz-free if no
string in S is a prefix of another string in S. For any subset S of {0,1}* and any
n € Z, we denote by S|, the set {s € S| |s| < n}. Note that ST,= 0 for every
subset S of {0,1}* and every negative integer n € Z. For any partial function
f, the domain of definition of f is denoted by dom f. We write “r.e.” instead of
“recursively enumerable.”

Let « be an arbitrary real. For any n € N* we denote by a[,€ {0,1}*
the first n bits of the base-two expansion of a — |« with infinitely many zeros,
where |« is the greatest integer less than or equal to «. For example, in the
case of &« = 5/8, ag= 101000. On the other hand, for any non-positive integer
n € Z, we set af,= A. A real a is called r.e. if there exists a total recursive
function f: Nt — @ such that f(n) < a for all n € NT and lim,, ., f(n) = a.
An r.e. real is also called a left-computable real.

2.1 Algorithmic information theory

In the following we concisely review some definitions and results of algorithmic
information theory [2, 3]. A computer is a partial recursive function C': {0,1}* —
{0,1}* such that domC' is a prefix-free set. For each computer C' and each
s € {0,1}*, Hc(s) is defined by He(s) = min { |p| ‘p €{0,1}* & C(p) ==}
(may be 00). A computer U is said to be optimal if for each computer C there
exists d € N with the following property; if p € dom C, then there is ¢ € dom U
for which U(q) = C(p) and |q| < |p| + d. It is easy to see that there exists an
optimal computer. We choose a particular optimal computer U as the standard
one for use, and define H(s) as Hy(s), which is referred to as the program-size
complexity of s or the Kolmogorov complexity of s. It follows that for every
computer C there exists d € N such that, for every s € {0,1}*,

H(s) < He(s) + d. (3)

Based on this we can show that, for every partial recursive function ¥: {0,1}* —
{0,1}*, there exists d € N such that, for every s € dom ¥,

H(W(s)) < H(s)+d. (4)

For any s € {0,1}*, we define s* as min{ p € {0,1}* | U(p) = s}, i.e., the first el-
ement in the ordered set {0, 1}* of all strings p such that U(p) = s. Then, |s*| =
H(s) for every s € {0,1}*. For any s,¢ € {0,1}*, we define H(s,t) as H(b(s,t)),
where b: {0,1}* x {0,1}* — {0,1}* is a particular bijective total recursive func-
tion. Note also that, for every n € N, H(n) is H(the nth element of {0,1}*).

Definition 1 (Chaitin {2 number, Chaitin [2]). For any optimal computer
V', the halting probability $2v of V is defined by

Qv= Y 27

pEdom V'
O

For every optimal computer V', since dom V' is prefix-free, {2y, converges and
0 < 2y < 1. For any a € R, we say that « is weakly Chaitin random if there
exists ¢ € N such that n — ¢ < H(al,) for all n € NT [2,3]. Based on Fact 1,
Chaitin [2] showed that {2y is weakly Chaitin random for every optimal computer
V. Therefore 0 < 2y < 1 for every optimal computer V. For any « € R, we say
that « is Chaitin random if lim,, . H(al,) —n = oo [3]. We can then show the
following theorem (see Chaitin [3] for the proof and historical detail).

Theorem 1. For every a € R, « is weakly Chaitin random if and only if « is
Chaitin random. a

Miller and Yu [7] recently strengthened Theorem 1 to the following form.

Theorem 2 (Ample Excess Lemma, Miller and Yu [7]). For every a € R,
a is weakly Chaitin random if and only if > 00, on—H(aln) < o, a

The following is an important result on random r.e. reals.

Theorem 3 (Calude, et al. [1], Kuera and Slaman [6]). For every « €
(0,1), « is r.e. and weakly Chaitin random if and only if there exists an optimal
computer V' such that o = 2y . O

3 Elaboration I of the Turing reduction 2y <7y dom U

Theorem 4 (main result I). Let V and W be optimal computers, and let
f: Nt — N be a total recursive function. Then the following two conditions are
equivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that,
for alln € NT, MM VIn(n) = Quly pin)—e-
(i) 300 275 < 0. O

Theorem 4 follows from Theorem 5 and Theorem 6 below, and Theorem 3.

Theorem 5. Let o be an r.e. real, and let V' be an optimal computer. For every
total recursive function f: Nt — N, if 3> 21" < oo, then there exist an
oracle deterministic Turing machine M and ¢ € N such that, for all n € NT,
MdomV[n(n) = arn—f(n)—C' g

Theorem 6. Let o be a real which is weakly Chaitin random, and let V' be
an optimal computer. For every total recursive function f: NT — N, if there
exists an oracle deterministic Turing machine M such that, for all n € NT,
MdomVin(n) = Ol n_f(n), then 307, 2=/ < . O

The proofs of Theorem 5 and Theorem 6 are given in the next two subsections,
respectively.

3.1 The proof of Theorem 5
In order to prove Theorem 5, we need Theorem 7 and Corollary 1 below.

Theorem 7 (Kraft-Chaitin Theorem, Chaitin [2]). Let f: Nt — N be a
total recursive function such that Y .-, 2=1(") < 1. Then there exists a total
recursive function g: Nt — {0,1}* such that (i) g is an injection, (i) the set
{g(n) | n € Nt} is prefiz-free, and (iii) |g(n)| = f(n) for alln € NT. O

Let M be a deterministic Turing machine with the input and output alphabet
{0,1}, and let C be a computer. We say that M computes C if the following
holds: for every p € {0,1}*, when M starts with the input p, (i) M halts and
outputs C(p) if p € dom C; (ii) M does not halt forever otherwise. We use this
convention on the computation of a computer by a deterministic Turing machine
throughout the rest of this paper. Thus, we exclude the possibility that there is
p € {0,1}* such that, when M starts with the input p, M halts but p ¢ dom C'.
For any p € {0,1}*, we denote the running time of M on the input p by Tas(p)
(may be 00). Thus, T (p) € N for every p € dom C if M computes C.

Theorem 8. Let V' be an optimal computer. Then, for every computer C there
exists d € N such that, for every p € {0,1}*, if p and the list of all halting inputs
for V' of length at most |p| + d are given, then the halting problem of the input
p for C' can be solved.

Proof. Let M be a deterministic Turing machine which computes a computer
C. We consider the computer D such that (i) dom D = dom C and (ii) D(p) =
T (p) for every p € dom C'. Recall here that we identify {0,1}* with N. It is easy
to see that such a computer D exists. Then, since V is an optimal computer,
from the definition of optimality there exists d € N with the following property;
if p € dom D, then there is ¢ € dom V' for which V(q) = D(p) and |q| < |p| + d.

Given p € {0,1}* and the list {q1, ..., ¢r} of all halting inputs for V of length
at most |p| + d, one first calculates the finite set S = {V(¢g;) |[i=1,...,L}, and
then calculates Tiax = max .S where S is regarded as a subset of N. One then
simulates the computation of M with the input p until at most the time step
Tax- In the simulation, if M halts until at most the time step Tp,ax, one knows
that p € dom C. On the other hand, note that if p € dom C then there is ¢ €
dom V such that V(q) = T (p) and |g| < |p| + d, and therefore ¢ € {¢1,...,qr}
and Thar(p) < Tmax- Thus, in the simulation, if M does not yet halt at the time
step Tiax, one knows that M does not halt forever and therefore p ¢ dom C. O

As a corollary of Theorem 8 we obtain the following.

Corollary 1. Let V' be an optimal computer. Then, for every computer C' there
exist an oracle deterministic Turing machine M and d € N such that, for all
n € N, MdomVintd(n) = dom C|,, where the finite subset dom C1,, of {0,1}*
is represented as a finite binary string in a certain format. a

Based on Theorem 7 and Corollary 1, Theorem 5 is proved as follows.

Proof (of Theorem 5). Let « be an r.e. real, and let V' be an optimal computer.
For an arbitrary total recursive function f: N* — N, assume that > | 2-f(n) <
oo. In the case of @ € Q, the result is obvious. Thus, in what follows, we as-
sume that o ¢ Q and therefore the base-two expansion of o — |« is unique and
contains infinitely many ones.

Since 27 27/ < oo, there exists dy € N such that 00 27/(M=do <
1. Hence, by the Kraft-Chaitin Theorem, i.e., Theorem 7, there exists a total
recursive function g: N* — {0,1}* such that (i) the function g is an injection,
(ii) the set {g(n) | n € NT} is prefix-free, and (iii) |g(n)| = f(n) + do for all
n € NT. On the other hand, since « is r.e., there exists a total recursive function
h: NT — Q such that h(k) < « for all k € Nt and limg_. h(k) = a.

Now, let us consider the following computer C'. For each n € N*, p, s € {0,1}*
and ! € N such that U(p) =1, g(n)ps € dom C' if and only if (i) |g(n)ps| =n —1
and (ii) 0.s < h(k)—|«] for some k € NT. It is easy to see that such a computer C
exists. Then, by Corollary 1, there exist an oracle deterministic Turing machine
M and d € N such that, for all n € Nt MdomVinti(n) = domC [,,, where
the finite subset dom CT,, of {0,1}* is represented as a finite binary string in a
certain format. We then see that, for every n € Nt and s € {0,1}* such that
sl = n.— lg)] — d - |a”],

g(n)d*s € dom C' if and only if s < alp,—|g(n)|—d—|d*|; (5)

where s and al,,_|g(n)|—d—|a~| are regarded as a dyadic integer. Then, by the fol-
lowing procedure, we see that there exist an oracle deterministic Turing machine
M, and ¢ € N such that, for all n € N*, M{lomw" (n) = alp—f(n)—c- Note here
that |g(n)| = f(n) + do for all n € Nt and also H(d) = |d*|.

Given n and domV [, with n > d, one first checks whether n — |g(n)| —
d — H(d) < 0 holds. If this holds then one outputs A. If this does not hold,
one then calculates the finite set dom C' [,_4 by simulating the computation
of M with the input n — d and the oracle dom V' [,,. Then, based on (5), one
determines o [y,_|g(n)|—a—m(a) Dy checking whether g(n)d*s € domC holds or
not for each s € {0,1}* with |s| =n — |g(n)| —d — H(d). This is possible since
lg(n)d*s| = n —d for every s € {0,1}* with |s| =n —|g(n)| — d — H(d). Finally,
one outputs o, _|g(n)|—d—H(d)- a

3.2 The proof of Theorem 6

In order to prove Theorem 6, we need Theorem 9 below and the Ample Excess
Lemma (i.e., Theorem 2).

Let M be an arbitrary deterministic Turing machine with the input and out-
put alphabet {0, 1}. We define Lj; = min{ |p| | p € {0,1}* & M halts on input p}
(may be 00). For any n > Ly, we define I}, as the set of all halting inputs p
for M with [p| < n which take longest to halt in the computation of M, i.e.,
as the set {p € {0,1}* | [p| < n & Ty (p) = Ty, } where T}, is the maximum
running time of M on all halting inputs of length at most n. We can slightly
strengthen the result presented in Chaitin [3] to obtain the following (see Note
in Section 8.1 of Chaitin [3]).

Theorem 9. Let V' be an optimal computer, and let M be a deterministic Tur-
ing machine which computes V. Thenn = H(n,p)+O(1) = H(p)+ O(1) for all
(n,p) withn > Ly and p € I7,. |

Proof (of Theorem 6). Let « be a real which is weakly Chaitin random. Let V'
be an optimal computer, and let M be a deterministic Turing machine which
computes V. For each n > Ljs, we choose a particular p,, from I};. For an
arbitrary total recursive function f: N* — N, assume that there exists an oracle
deterministic Turing machine M such that, for all n € N*, MJ*™VI"(n) =
alp_f(ny- Note that, given (n,p,) with n > Ly, one can calculate the finite set
dom V' [, by simulating the computation of M with the input ¢ until at most
the time step Thas(pn), for each ¢ € {0,1}* with |¢| < n. This can be possible
because Tar(pn) = Ty for every n > Lps. Thus, we see that there exists a
partial recursive function ¥: N x {0,1}* — {0,1}* such that, for all n > Ly,
U(n,pn) = alp_f(n). It follows from (4) that H(al,—tmy) < H(n,pn) + O(1)
for all n > Lp;. Thus, by Theorem 9 we have

H(aln—jm)) <n+0(1) (6)

for all n € NT.

In the case where the function n — f(n) of n is bounded to the above,
there exists ¢ € N such that, for every n € N*, —f(n) < ¢ — n, and there-
fore Y07, 2-f(n) < 92¢ Thus, in what follows, we assume that the function
n — f(n) of n is not bounded to the above.

We define a function g: N* — Z by g(n) = max{k — f(k) | 1 < k < n}.
It follows that the function ¢ is non-decreasing and lim, ., g(n) = co. Thus
we can choose an enumeration ny,ng, ng,... of the countably infinite set {n €
Nt |n>2&0<g(n—1) <g(n)} with n; < njyq. It is then easy to see that
g(nj) =n; — f(n;) and 1 < n; — f(n;) < njt1 — f(n;y1) hold for all j. On the
other hand, since « is weakly Chaitin random, using the Ample Excess Lemma,
i.e., Theorem 2, we have S 07 2n~H(aln) < oo, Thus, using (6) we see that

S 2 < 3 g) —H (-0 HOM) < § gn=H (@) +00) < o6, (7)
j=1 j=1 n=1
On the other hand, it is easy to see that (i) g(n) > n— f(n) for every n € N7,

and (ii) g(n) = g(n;) for every j and n with n; < n < n;41. Thus, for each k > 2,
it is shown that

ng—1 ni—1 k—1mnj+1—1 k—1 njy1—1
Z 9—f(n) < Z 9g9(n)—n _ Z; Z 9g9(n)—n _ ;29(%) Z 9—n
n=ni n=ni j=1 n=n; j= n=n;
— kil on;—f(n;j)o—n;+1 (1 _ 2*n1+1+n1) < Qkil 9—f(n;)
j=1 j=1

Thus, using (7) we see that limy_ oo 327 27F(") < 50, Since 277 > 0 for all

n=ni
n € NT and lim;_, o, n; = 0o, we have 3°° 277" < o0, o

4 Elaboration II of the Turing reduction 2y <r dom U

Theorem 10 (main result IT). Let V and W be optimal computers, and let
f: Nt — N be a total recursive function. Then the following two conditions are
equivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that,
for infinitely many n € N, MdomVin(n) = Oy e f(n)—c-
(ii) The function f is not bounded to the above. O

In a similar manner to the proof of Theorem 4 we can prove Theorem 10.
The implication (ii) = (i) of Theorem 10 follows from Lemma 1 below and
Corollary 1. On the other hand, the implication (i) = (ii) of Theorem 10 follows
from Theorem 9 and Theorem 1. By setting f(n) = 0 and W = V in Theorem 10,
we obtain the following.

Corollary 2. Let V' be an optimal computer. Then, for every c € N, there does
not exist an oracle deterministic Turing machine M such that, for infinitely
many n € N*, MdomVinte(n) = Oy [,. 0

5 Elaboration of the Turing reduction domU <p 2y

Theorem 11 (main result IIT). Let V and W be optimal computers, and let
f: NT — N be a total recursive function. Then the following two conditions are
equivalent:

(i) There exist an oracle deterministic Turing machine M and ¢ € N such that,
for all n € Nt, M{?vin}(n) = dom W It f(n)—c, where the finite subset
dom W, 4 f(ny—c 0f {0, 1}* is represented as a finite binary string in a certain
format.

(ii) The function f is bounded to the above. O

The implication (ii) = (i) of Theorem 11 follows immediately from Fact 1
and Corollary 1. On the other hand, in order to prove the implication (i) = (ii)
of Theorem 11, we need the following lemma first.

Lemma 1. Let f: Nt — N be a total recursive function. If the function f is not
bounded to the above, then the function f(n) — H(n) of n € Nt is not bounded
to the above.

Proof. Contrarily, assume that there exists ¢ € N such that, for every n € NT,
f(n) < H(n) + c¢. Then, since f is not bounded to the above, it is easy to see
that there exists a total recursive function ¥: N* — N7 such that, for every
ke Nt k< H(W(k)). It follows from (4) that k < H(k) + O(1) for all k € NT.
On the other hand, using (3) we can show that H(k) < 2log, k + O(1) for all
k € N*. Thus we have k < 2log, k + O(1) for all £ € N*. However, we have a
contradiction on letting &k — oo in this inequality, and the result follows. ad

Proof (of (i) = (ii) of Theorem 11). Let V and W be optimal computers. For
an arbitrary total recursive function f: Nt — N, assume that there exist an
oracle deterministic Turing machine M and ¢ € N such that, for all n € NT,
M r"}(n) = dom W1, 4 f(n)—c- Then, by considering the following procedure,
we see that n + f(n) < H(2y[,) + O(1) for all n € N*.

Given 2y [,, one first calculates the finite set dom W1, 4 ¢(n)—. by simulating
the computation of M with the input n and the oracle {2y [,. Then, by calculating
the set { W(p) | p € dom W1, t(n)—} and picking any one finite binary string s
which is not in this set, one can obtain s € {0, 1}* such that n+f(n)—c < Hw (s).

Thus, there exists a partial recursive function ¥: {0,1}* — {0, 1}* such that,
for all n € Nt n+ f(n) — ¢ < Hy(¥(2y |,)). It follows from the optimality
of W and (4) that n + f(n) < H(2v[,) + O(1) for all n € NT, as desired. On
the other hand, using (3) we can show that H(s) < |s| + H(|s|) + O(1) for all
s € {0,1}*. Therefore we have f(n) < H(n)+ O(1) for all n € N*. Thus, it
follows from Lemma 1 that f is bounded to the above. O

Acknowledgments. The proof of Theorem 8 was originally based on the com-
putation history of M with input p in place of Tis(p). Inspired by the suggestion
of the anonymous referee to use (p, Tas(p)) instead, we can reach the current form
of the proof using T/ (p). In addition, the proof of the implication (i) = (ii) of
Theorem 11 is significantly shortened by the suggestion of the same referee. Thus
the author is grateful to the referee for the insightful suggestions. This work was
supported by KAKENHI, Grant-in-Aid for Scientific Research (C) (20540134),
by SCOPE from the Ministry of Internal Affairs and Communications of Japan,
and by CREST from Japan Science and Technology Agency.

References

1. C. S. Calude, P. H. Hertling, B. Khoussainov, and Y. Wang, “Recursively enumer-
able reals and Chaitin {2 numbers,” Theoret. Comput. Sci, vol. 255, pp. 125-149,
2001.

2. G. J. Chaitin, “A theory of program size formally identical to information theory,”
J. Assoc. Comput. Mach., vol. 22, pp. 329-340, 1975.

3. G. J. Chaitin, Algorithmic Information Theory. Cambridge University Press, Cam-
bridge, 1987.

4. G. J. Chaitin, “Program-size complexity computes the halting problem,” Bulletin
of the European Association for Theoretical Computer Science, vol. 57, p. 198,
October 1995.

5. R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity.
Springer-Verlag, To appear.

6. A. Kucera and T. A. Slaman, “Randomness and recursive enumerability,” STAM
J. Comput., vol. 31, No. 1, pp. 199-211, 2001.

7. J. Miller and L. Yu, “On initial segment complexity and degrees of randomness,”

Trans. Amer. Math. Soc., vol. 360, pp. 3193-3210, 2008.

A. Nies, Computability and Randomness. Oxford University Press, New York, 2009.

R. M. Solovay, “Draft of a paper (or series of papers) on Chaitin’s work ... done

for the most part during the period of Sept.—Dec. 1974,” unpublished manuscript,

IBM Thomas J. Watson Research Center, Yorktown Heights, New York, May 1975,

215 pp.

©

