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Abstract: What we will do in this talk U: universal Turing machine.

Algorithmic Information Theory (AIT, for short) is a theory of program-size.
In this talk, we introduce the notion of thermodynamic quantities into AIT
by performing the following replacements for the thermodynamic quantities
of a quantum system at temperature 1" obeying the canonical distribution.
We then investigate their randomness properties.

An energy eigenstate n A program p of U,
The energy Ep of n The length |p| of p,
|
Boltzmann constant & 1/1In2. Boltzmann factor: 2T
Partition function Z(T) = Ze——i’r” Z(T) = 22 o
Free energy F(T)= —kTInZ(T) F(T) = —-Tlog», Z(T),
1 En
Ener E(T)=——)» Enpe kT E(T) = ———
E(T) — F(T) E(T) — F(T)

Entropy S(T) = S(T) =

T T




Temperature = Compression Rate.



Preliminaries: Prefix-free Sets

e {0,1}*:={\,0,1,00,01,10,11,000,001,010,011,...}
The set of finite binary strings
Here, A denotes the empty string.

e For any s € {0,1}*, |s| denotes the length of s.
For example |010| =3, |A =0.

e Let P be a subset of {0,1}*. We say P is prefix-free if for any distinct s
and t € P, s is not a prefix of t.

For example  {0,10}: prefix-free.
{0,01}: not prefix-free.

e A prefix-free set can be finite and can be infinite.

e For every prefix-free set P C {0, 1}*,

o2kl <1 (Kraft inequality)
seP



Preliminaries: Prefix of Real Number

Definition| [a prefix of a real]

Let o« be a real, and let n be a positive integer.
We denote by al, the first n bits of the base-two expansion of a — |«].
T he fractional part of «.

Example| [circle ratio]

Consider the case of a« = =, the circle ratio.

7= 11.001001000011111101......

in base-two notation.
T herefore, the fractional part of ,

m— |7 =.001001000011111101......

in base-two notation.
T hus,

ml1=0, 7lo=00, w[3=001, =|4= 0010, ......

T hese are finite binary strings.



Preliminaries: Partial Recursive Functions — Definition

Definition | [Partial recursive function]

We say f is a partial recursive function if the following two hold for f:

(i) There exists a subset V of {0,1}* such that f: V — {0, 1}*,
where V is the domain of definition of f and denoted by Dom f.

(i) There exists an algorithm A such that, for each s € {0, 1},
when executing A with the input s,

if s € Dom f then the computation of A terminates and outputs f(s);

if s ¢ Dom f then the computation of A4 does not terminate. [ ]

Here, we can regard an algorithm, for example, as a program written by the
programing language C.



Preliminaries: Partial Recursive Functions — Example

Example| [a partial recursive function calculating a prefix of =]

We define the function fr: Vx — {0, 1}* by the conditions that
(i) For every positive integer n,
fr(the base-two representation of n) = nln,

I.e.,
fr(1) =x[1= 0, fz(10) = nw|o= 00, f-(11) = w[3= 001, ......

(ii) Dom fr(= Vz) is the set of the base-two representations of all positive
integers, i.e., bom f = {1,10,11,100,101,110,111,1000,...}.

Obviously, there exists an algorithm A; such that, given the base-two rep-
resentation of a positive integer n as an input, the computation of Aj
terminates and outputs n[s,.

For any s ¢ Dom fr, A with the input s can be made unterminated, for
example, by writing the code while(1); on an appropriate place of the pro-
gram in the case of C.

Thus, fr is a partial recursive function. [ ]



Preliminaries: Computers

Definition | [computer] A partial recursive function C is called a computer

if Dom C is a prefix-free set. [ ]

Example

T he partial recursive function fr is not a computer because 1, 10 € Dom f; =
{1,10,11,100,101,110,...}.

A computer C; calculating a prefix of « is constructed as follows:

Let 16165 ...0;_1b; be the base-two representation of any positive integer n,
where b, = 0 or 1. Then define n := 10b710650...b6;_108;1.

We define the function C; by the condition that,
for every positive integer n, Cr(m) = n|n, i.e.,
Cr(11) = 7w[1=0, Cr(1001) = w[»= 00, Cx(1011) = w[3= 001, ......

Thus, by this prescription, Dom C'; is made prefix-free, and therefore Cr is
a computer calculating a prefix of 7. H



Preliminaries: Program-size Complexity 1

Definition| For any computer C and any s € {0, 1}*,

He(s) :=min{|p| |p€ {0,1}* & C(p) =s}.

Example| Since Cr(m) = n[n, and therefore Cr is a one-to-one function,

He (mln) = 7| < 2logon + 2.



Preliminaries: Program-size Complexity II

Definition | [optimal computer] A computer U is called optimal if, for each
computer C, there exists a constant d(U, C') such that, for every s € {0,1}%,

Hy(s) < Ho(s) +d(U, C).

Theorem | There exists an optimal computer. (a universal Turing machine)

Definition| [program-size complexity]
We choose a particular optimal computer U as a standard one. Then the

program-size complexity (or Kolmogorov complexity) H(s) of s € {0O,1}* is
defined by H(s) := Hy(s).

Thus H(s) < Ha(s) + d(U,C) for all computers C. Therefore, H(s) can
achieve the optimal compression of every s € {0,1}*, up to an additive con-
stant d(U, C) independent of s.

—> H(s): The amount of randomness contained in s, which cannot be
captured and cannot be generated in a computational manner.

Example| H(n[n) < Ho (7ln) +O(1) < 2logon + O(1) for all n.
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Preliminaries: Compression Rate of Real Number 1

Definition | [the compression rate of a real] Let o be a real.

The limit value

H
im Haln)
n—~oxo n
is called the compression rate of . [ ]

Numerator H(«aln): The size of compressed of, by H.
Denominator n = |aln|: The original size of afy,.

Example
A real D is called computable if there exists an algorithm which calculates
each bit in the base-two expansion of D one by one.

e m and e are computable reals.

e Algebraic numbers and therefore rational numbers are computable reals.
e For every computable real D, H(D[,) < 2logon + O(1) for all n. There-
fore, the compression rate of every computable real D equals to O, since

0< lim HPln) o 210920+ 0(1) _

— N—00 n — M—00 n

0.
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Preliminaries: Compression Rate of Real Number II

Definition | [Chaitin’s halting probability €2, Chaitin 1975]

S >—|p|

peDomU

Q2 :

The first n bits of the base-two expansion of 2 (i.e., Q[,) solve the halting
problem of U for inputs of length at most n.

Theorem | [Chaitin 1975] 2 is incompressible, i.e., the compression rate of
Q2 equals to 1. H

Since DomU is prefix-free, €2 < 1 by Kraft inequality and, in

particular, €2 converges. This is one of the reasons why the domain of
definition of a computer is required to be prefix-free.

Example| Let €2 = 0.b1bob3b4b5. .. ... be the base-two expansion of €2.
Then consider the real € := 0.b10b50b30b400b50....... We can show that
H(Q 1
jim 182n) -,
n—0o0 n 2

i.e., the compression rate of 2 equals to 1/2. [ ]
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Preliminaries: Generalization of 2

Definition | [generalization of Chaitin’s €2, Tadaki 1999]

|p]

QD)= ) 27D (D > 0).
peDomU

Q1) = Q.

The first n bits of the base-two expansion of Q(D) (i.e., Q2(D)[n) solve the
halting problem of U for inputs of length at most Dn.

Theorem| [Tadaki 1999] Let D be a real.
(i) IfFO< D <1 and D is computable, then

i HQDI _

i.e., the compression rate of (D) equals to D.
(ii) If 1 < D, then Q(D) diverges to oo. L]
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Motivation

[Calude & Stay, Information and Computation 204 (2006)] pointed out that
Q(D) is similar to a partition function in statistical mechanics.

e In statistical mechanics, the partition function Z is given as:
En
Z::§:e_mi
n

Here, n denotes the quantum number of an energy eigenstate of a quantum
system, E, its energy, and T temperature.

e On the other hand, Q2(D) is given as:

1P|

QD)= Y 2°» (D > 0).
peDomU
Thus, Z coincides with Q2(D) by performing the following replacements:
An energy eigenstaten = A program p € DomU,
The energy E, of n —> The length |p| of p,
Temperature T —> Compression rate D,
Boltzmann constant & — 1/In2.

14



What is the partition function in statistical mechanics 7

Quick Review of Statistical Mechanics

15



Quick Review of Statistical Mechanics (I)

Consider a quantum system (@ at constant temperature T'.

Namely, consider a quantum system @ in thermal contact with a very large
quantum system @r, called heat reservoir, whose temperature is T'.

Q Heat Reservoir Qg
Temperature: T

Let Qiota) be the total quantum system consisting of Q) and Q.

16



Quick Review of Statistical Mechanics (II)

Basic Ingredients in Statistical Mechanics

any quantum system is described by a quantum state completely.

e In statistical mechanics,
among all quantum states, energy eigenstates are of particular importance.

e An energy eigenstate of a quantum system is specified by a number
n=1,2,3,..., called a quantum number.

Thus the energy of a quantum system is assumed to take discrete values.
We identify a quantum number with the corresponding energy eigenstate.

e If 3 quantum system is in the energy eigenstate, then the quantum system
has a definite energy.

17



Quick Review of Statistical Mechanics (III)

Definition| [(Statistical Mechanical) Entropy]
The entropy S(E) of a quantum system with energy FE is defined by
S(E) = kino(FE).

Here, ©(F) is the number of energy eigenstates whose energy E’ satisfies
that

E< E' < E+ §6E,

where dF is the indeterminacy in measurement of the energy of the quantum
system. The proportional constant k is called the Boltzmann constant. ||

Definition | [Temperature]
The temperature T' of a quantum system with energy FE is defined by

1 s
— =22(R).
T OF

L]

Note that the above definitions apply to each of the quantum systems @,

@Rr, and Qiotal-
18



Quick Review of Statistical Mechanics (IV)

The fundamental postulate of statistical mechanics is stated as follows for
the total quantum system Qiotal:

The Principle of Equal Probability

If the energy of the quantum system Qiotg) IS known to have a constant
value between E and E + 0F;

E < (The energy of Qiotal) < E+ dF,

then the quantum system Q:iot5) IS equally likely to be in any energy eigen-
state whose energy E’ satisfies that

E<E <E+6E.

Here, dF is the indeterminacy in measurement of the energy of the quantum
system Qiotal- H
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Quick Review of Statistical Mechanics (V)

Let us calculate the probability Prob(n) that the quantum system @ is in
an energy eigenstate n with energy E,, based on the Principle of Equal
Probability for the total quantum system Qiot5) With the total energy E.

Q Heat Reservoir Qr
Energy : E — bk,

(by the law of the conservation of energy)

Enerqgy: E,

By the Principle of Equal Probability, Prob(n) is proportinal to the number
Or(E — E,) of the energy eigenstates allowable in the heat reservoir Qr

with the enerqy E — E,,.

Using (i) the definition Sg(FE) = kIn©r(FE) of the entropy of the heat
reservoir Qr (ii) the definition 1/7T = %LER(E) of the heat reservoir Qr, and
(iii) the fact that E,, < E, we have the following result:
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Quick Review of Statistical Mechanics (\VI)

As a result of the principle of equal probability, we can show the following
for the quantum system @ (and not for Q;,iq1):

Result of the Principle of Equal Probability

The probability Prob(n) that the quantum system @ is in an energy eigen-
state n with energy FE,, iS given as:

&

Prob(n) = —e™ *T.

1
Z

En
Here, the normalization factor Z = Ze_k_T IS called the partition function
n
of the quantum system. The distribution Prob(n) is called the canonical

distribution. [ ]

The partition function Z is of particular importance in statistical mechan-
ics, because all the thermodynamic quantities of the quantum system can
be expressed by using the partition function Z, and the knowledge of Z is
sufficient to understand all the macroscopic properties of the system.
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Quick Review of Statistical Mechanics (VII)

Thermodynamic Quantities of the quantum system @ at temperature T

1 En, d
o Energy B =3 EnProb(n)=_3 Fne i = kTQd—T InZ.
n n

The energy E of the quantum system (@ is the expected value of an energy
E, of an energy eigenstate n of the quantum system @ at temperature T'.

e Free Energy F = —kTInZ.

The free energy F' of the quantum system (@ is related to the work performed
by the system during a process at constant temperature T'.
F—-F

e (Statistical Mechanical) Entropy S = .

Note that the entropy S of the system ) equals to the Shannon entropy of
the probability distribution {Prob(n)}, i.e., S = —k) Prob(n)InProb(n).
n

dFE
e Specific Heat C = —.
dT
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Aim of this talk

We propose a statistical mechanical interpretation of AIT (Algorithmic In-
formation Theory) where Q2(D) appears as a partition function.

We do this in the following manner:

We introduce the notion of thermodynamic quantities such as free energy,
energy, (statistical mechanical) entropy, and specific heat into AIT by per-
forming the following replacements for the corresponding thermodynamic
quantities of a quantum system at temperature T obeying the canonical
distribution:

An energy eigenstate n A program p € DomU,
The energy E,, of n The length |p| of p,
Boltzmann constant & 1/1n2.

We then determine the convergence or divergence of each of the quantities.
In the case where a thermodynamic quantity converges, we calculate the
compression rate of the value of the thermodynamic quantity, based on
program-size complexity H(s).

—> We see that all of the compression rate of the thermodynamic quan-
tities, which include temperature T itself, equal to T.

23



Immediate Application of the Replacements: Transient Definitions

Perform the following replacements for the corresponding thermodynamic
quantities of a quantum system at temperature T. (U: optimal computer)

An energy eigenstate n
The energy E, of n

A program p € bomU,
The length |p| of p,

p

Boltzmann constant & 1/1In2. Boltzmann factor: 2° T
En |
Partition function Z(T) =Y e * Zz(y= Y 27T,
n peDomU

Free energy F(T) = —kTInZ(T)
Ener E(T) = Ene &7
gy E(T)= Z(T) Y Epe

E(T) — F(T)
T

d
Specific heat C(T) = ﬁE(T)

Entropy S(T) =

F(T) = -Tlogo Z(T),

D=5 > W2 F
s = B - F(T)
o(r) = L B(T)
=T

24



Thermodynamic Quantities in AI'T: Rigorous Definitions

Redefine the transient definitions rigorously as follows.

Definition]| Let ¢g1,92,93,...... be an arbitrary enumeration of DomU. |

Note that the results of this talk are independent of the choice of {¢;}.

Definition| [Thermodynamic Quantities in AIT, Tadaki 2008] Let T > 0.

‘qz‘

(i) partition function Z(T) := Ilm Zm(T), where Z,,(T) = Z 27T .
i=1
(ii) free energy F(T) := W![)noo Fn(T), where Fp,(T) = —T'1ogo Zm (T).

(i) energy E(T) := |im_ Em(T), where En(T) = Zm(T) Z lg;| 2~

En(T) — Fin(T)
- .

(iv) specific heat C(T) := lim Cm(T), where Cn(T) = El (T). [ ]

(iii) entropy S(T) := lim_Sm(T), where Sy (T) =

These are variants of Chaitin’'s 2. In particular, Z(T) = Q(T).
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Compression Rate = Temperature.
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Thermodynamic Quantities in AI'T: Randomness Property

Theorem| [randomness property, Tadaki, CiE 2008] Let T be a real.

() IFO<T < 1and T is computable, then each of Z(T), F(T), E(T), S(T),
and C(T) converges to a real whose compression rate equals to T, i.e.,

i LD _ oy BEDIW _ .
i HEDI _ o HEDI) _ o HOD g,

(i) If 1 < T, then Z(T), E(T), and S(T) diverge to oo, and F(T) diverges
to —o0.
(iii) In the case of T =1, C(T) diverge to oo. L]

In the case of T' > 1, it is still open whether C(T) diverges or not.

Implication of (i): The compression rate of the values of all the thermo-
dynamic quantities equals to the temperature T.
Thermodynamic Interpretation of (ii) and (iii): “Phase Transition” occurs
at temperature 1.
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Thermodynamic Quantities in AI'T: Remark

[Specific Nature of Thermodynamic Quantities in AIT]

T he definitions of the thermodynamic quantities in AI'T involve the Boltz-
mann factor 2~ Pl/T For example, for every T € (0, 1),

S0 1 gl >—la;l/T

E(T) =
(T) Z£12—|%\/T ’
2
d In2 | S°%° . |g,|2 2~ lal/T © |g:| 2—lal/T
dT T >0 2714 500, 274

However, note that the compression rate of every function of 71" involving

1P|
the Boltzmann factor 2 T does not necessarily equals to T'.

To see this, consider the following quantity Z(T) which is artificial
from the point of view of statistical mechanics:

_ 0 a5\ 2

Z(T):= > (2‘?) .
i=1

Since Z(T) = Z(T/2), we see that, for every T € (0, 1), if T is computable

then the compression rate of Z(T) equals to T//2 and not to T.
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Thermodynamic Quantities in AIT: Temperature

Temperature = Fixed Point Theorems

In the case where T is computable with O < T < 1,
all of the compression rate of the thermodynamic quantities:

partition function Z(T), free energy F(T),
energy E(T), entropy S(T),and specific heat C(T),

equal to the temperature T

However,

one of the most typical thermodynamic quantities is temperature T itself.

Thus, the following question arises naturally:

Question

Can the compression rate of the temperature equal to the

temperature itself ? Self-referential Question

We can answer this question affirmatively in the following form:

29



Fixed Point Theorem on Compression Rate: Main Theorem

T heorem

[fixed point theorem on compression rate, Tadaki, CiE 2008]
For every T € (0,1), if Z(T) is a computable real, then

H(T
jim 11n) =T,
mn—0o0 n
i.e., the compression rate of 1" equals to T itself. [ ]

Intuitive Meaning; Metaphor

Consider a file of infinite size whose content is

“The compression rate of this file is 0.100111001 a

When this file is compressed, the compression rate of this file actually equals
to 0.100111001------ - as the content of this file says.

T his situation forms a fixed point and is self-referential !

30



Remark on the sufficient condition in the fixed Point T heorem

Theorem| [fixed point theorem on compression rate] [ ]
For every T € (0,1), if Z(T) is computable, then limp—oo H(T|n)/n=T. L]

Note that Z(T) = 32,27 14l/T is a strictly increasing continuous function
of T € (0,1), and the set of all computable reals is dense in R. Thus,

Theorem| Theset {T € (0,1) | Z(T) is computable} is dense in (0,1). [

Corollary| [density of the fixed points]
The set {T € (0,1) | limp—oo H(T[n)/n =T} is dense in (0,1). L]

At this point, the following question would arise naturally:

Question| Is this sufficient condition, i.e., the computability of Z(T),

also necessary for T' to be a fixed point ?

Completely not ! (as we can see through the following

argument)
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Thermodynamic Quantities in AIT: Fixed Point Theorems

In the fixed point theorem, Z(T') can be replaced by each of the thermody-
namic quantities F(T), E(T), and S(T) as follows.

Theorem| [fixed point theorem by the free energy F'(T), Tadaki, LFCS’'09]
For every T € (0,1), if F'(T) is computable, then

im 2(TTn)

n—oo n

=1T.

Theorem| [fixed point theorem by the energy E(T), Tadaki, LFCS'09]
For every T € (0,1), if E(T) is computable, then

Theorem| [fixed point theorem by the entropy S(T'), Tadaki, LFCS'09]
For every T € (0,1), if S(T") is computable, then

im 2(TTn)

n—oo n

=1T.

These fixed point theorems have the exactly same form as one by Z(T).
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Relation between the sufficient conditions of FPTs

Theorem| [Tadaki, LFCS’'09] There does not exist T' € (0,1) such that
both Z(T) and F(T) are computable.

Proof)

Contrarily, assume that both Z(T) and F(T) are computable for some T €
(0,1). Since the statistical mechanical relation F(T) = —T'log> Z(T") holds,

F(T)

loga Z(T)’

Thus, T is computable, and therefore the compression rate of Z(T) equals
to T, i.e., liMp—oo H(Z(T)[n)/n = T. This is positive since T'> 0. On the
other hand, since Z(T') is computable by the assumption, the compression
rate of Z(T') equals to 0. Thus we have a contradiction. L]

{T € (0,1) | Z(T) is computable} n{T € (0,1) | F(T) is computable } = 0.
dense in (0,1) dense in (0,1)

In particular, this shows that the computability of Z(T') is not a necessary
condition for T to be a fixed point in the fixed point theorem by Z(T).
33



Relation between the sufficient conditions of FP Ts II

Theorem| There does not exist T' € (0,1) such that all of Z(T), E(T),
and S(T) are computable.

Proof) Use the statistical mechanical relation

S(T)—E( )

+ logo Z(T).
L]

Theorem| There does not exist T' € (0,1) such that all of F(T), E(T),
and S(T) are computable.

Proof) Use the thermodynamic relation

E(T) - F(T)
— .

S(T) =

34



Summary

Temperature = Compression Rate.
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Remark: Physical Implication of the Results

Definition| Let g1,92,93,...... be an arbitrary enumeration of DomU. [

In the statistical mechanical interpretation of AIT,

q1,92,Q3 -« - - - - correspond to energy eigenstates of a quantum system and
lq1!, a2l lg3],-----. correspond to energy eigenvalues of the quantum sys-
tem with degeneracy.

Theorem | [distribution of programs (i.e., “energy eigenstates’ ), Solovay]

#{p|peDomU & |p| <n} =2""HF+OW) for all n e N.

(In statistical mechanics, this quantity is “the number of states below en-
ergy n'')
Here H(n) = H(the base-two representation of n). L]

If the energy eigenvalues of a quantum system distribute according to the
above distribution, then the following situation can realize:

If T is a computable real, the compression rate of the values of
thermodynamic quantities at temperature T' equals to T
iIn the quantum system.
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Remark: Mathematical Implication of the Results

The proofs of the fixed point theorems on compression rate by F(T), E(T),
and S(T') depend heavily on the following thermodynamic relations:

Lemma | [thermodynamic relations] T € (0,1).
(i) Fro(T) = =Sm(T), Ep(T) = Cm(T), and Sp,(T) = Cn(T)/T.
(ii) F'(T) = -S(T"), E/(T) = C(T), and S (T) = C(T)/T.

(iii) S (T),Cn(T) > 0. Sy (T),Ch(T) > 0 for all sufficiently large k.
S(T),C(T) > 0. ]

Moreover, the proof of the following theorem depends on the statistical
mechanical relation F(T) = —T'log, Z(T).

Theorem| There does not exist T € (0,1) such that both Z(T) and F(T)
are computable. [ ]

This theorem says that the computability of F'(T") gives completely different
fixed points from the computability of Z(T).

T hese fact would imply that the analytic method can be used in the research
of AIT (algorithmic randomness).
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